{"title":"无源高频射频识别应答器的反向定向整流天线阵列","authors":"S. Böller, T. Grenter, A. Hennig, A. Grabmaier","doi":"10.1109/prime55000.2022.9816744","DOIUrl":null,"url":null,"abstract":"In this work we combine the retrodirectivity of Van Atta arrays with the direction-independent power reception capability of rectenna arrays to compensate for the high free-space path loss in the super high frequency (SHF) band. Currently the range of SHF systems using modulated backscattering at passive transponders is limited by this effect. To overcome this problem we propose a new array structure connecting multiple antennas and rectifiers through a passive network. By using the proposed approach on an ${N}\\times{N}$ array, energy and backscatter range can both be increased by a factor of N. This enables radio frequency identification (RFID) systems in the SHF band to achieve similar coverage as ultra high frequency (UHF)-RFID systems, while gaining the advantage of higher available bandwidth. Influences from the direct environment of the transponders can be compensated for and the possibility of high accuracy transponder localization arises.","PeriodicalId":142196,"journal":{"name":"2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Retrodirective Rectenna Arrays for passive SHF-RFID Transponders\",\"authors\":\"S. Böller, T. Grenter, A. Hennig, A. Grabmaier\",\"doi\":\"10.1109/prime55000.2022.9816744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we combine the retrodirectivity of Van Atta arrays with the direction-independent power reception capability of rectenna arrays to compensate for the high free-space path loss in the super high frequency (SHF) band. Currently the range of SHF systems using modulated backscattering at passive transponders is limited by this effect. To overcome this problem we propose a new array structure connecting multiple antennas and rectifiers through a passive network. By using the proposed approach on an ${N}\\\\times{N}$ array, energy and backscatter range can both be increased by a factor of N. This enables radio frequency identification (RFID) systems in the SHF band to achieve similar coverage as ultra high frequency (UHF)-RFID systems, while gaining the advantage of higher available bandwidth. Influences from the direct environment of the transponders can be compensated for and the possibility of high accuracy transponder localization arises.\",\"PeriodicalId\":142196,\"journal\":{\"name\":\"2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/prime55000.2022.9816744\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/prime55000.2022.9816744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Retrodirective Rectenna Arrays for passive SHF-RFID Transponders
In this work we combine the retrodirectivity of Van Atta arrays with the direction-independent power reception capability of rectenna arrays to compensate for the high free-space path loss in the super high frequency (SHF) band. Currently the range of SHF systems using modulated backscattering at passive transponders is limited by this effect. To overcome this problem we propose a new array structure connecting multiple antennas and rectifiers through a passive network. By using the proposed approach on an ${N}\times{N}$ array, energy and backscatter range can both be increased by a factor of N. This enables radio frequency identification (RFID) systems in the SHF band to achieve similar coverage as ultra high frequency (UHF)-RFID systems, while gaining the advantage of higher available bandwidth. Influences from the direct environment of the transponders can be compensated for and the possibility of high accuracy transponder localization arises.