利用临床记录和微调变压器预测慢性病

Swati Saigaonkar, Dr. Vaibhav Eknath Narawade
{"title":"利用临床记录和微调变压器预测慢性病","authors":"Swati Saigaonkar, Dr. Vaibhav Eknath Narawade","doi":"10.1109/IBSSC56953.2022.10037512","DOIUrl":null,"url":null,"abstract":"Electronic health records(EHR) have been used extensively by researchers lately to gain insights and use them as clinical informatics. EHR data contains structured data, as a result of having information systems in-place, and also unstructured data like clinical notes. These unstructured data have a huge scope of exploration and can derive meaningful insights. Challenges exists like the heterogeneous and multi modal nature of such data. This work provides insights into the EHR data, the datasets available for research, the tasks that can be performed on them, the methods that can be applied on them, and then demonstrates how BERT and DistilBERT can be fine-tuned on the medical datasets to predict chronic diseases like asthma, renal diseases, heart diseases and arthritis and how DISTILBERT can be a preferred option over BERT. Both the models BERT and DISTILBERT have been pre-trained and then fine tuned to predict the chronic diseases from the clinical notes.","PeriodicalId":426897,"journal":{"name":"2022 IEEE Bombay Section Signature Conference (IBSSC)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting chronic diseases using clinical notes and fine-tuned transformers\",\"authors\":\"Swati Saigaonkar, Dr. Vaibhav Eknath Narawade\",\"doi\":\"10.1109/IBSSC56953.2022.10037512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electronic health records(EHR) have been used extensively by researchers lately to gain insights and use them as clinical informatics. EHR data contains structured data, as a result of having information systems in-place, and also unstructured data like clinical notes. These unstructured data have a huge scope of exploration and can derive meaningful insights. Challenges exists like the heterogeneous and multi modal nature of such data. This work provides insights into the EHR data, the datasets available for research, the tasks that can be performed on them, the methods that can be applied on them, and then demonstrates how BERT and DistilBERT can be fine-tuned on the medical datasets to predict chronic diseases like asthma, renal diseases, heart diseases and arthritis and how DISTILBERT can be a preferred option over BERT. Both the models BERT and DISTILBERT have been pre-trained and then fine tuned to predict the chronic diseases from the clinical notes.\",\"PeriodicalId\":426897,\"journal\":{\"name\":\"2022 IEEE Bombay Section Signature Conference (IBSSC)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Bombay Section Signature Conference (IBSSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IBSSC56953.2022.10037512\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Bombay Section Signature Conference (IBSSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IBSSC56953.2022.10037512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电子健康记录(EHR)最近被研究人员广泛使用,以获得见解并将其用作临床信息学。EHR数据包含结构化数据(由于有适当的信息系统)和非结构化数据(如临床记录)。这些非结构化数据具有巨大的探索范围,可以获得有意义的见解。这些数据的异构性和多模态性质存在挑战。这项工作提供了对EHR数据的见解,可用于研究的数据集,可以在它们上执行的任务,可以应用于它们的方法,然后演示了BERT和蒸馏伯特如何在医疗数据集上进行微调,以预测哮喘、肾脏疾病、心脏病和关节炎等慢性疾病,以及蒸馏伯特如何成为BERT的首选。BERT和DISTILBERT模型都经过预先训练,然后进行微调,以根据临床记录预测慢性疾病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting chronic diseases using clinical notes and fine-tuned transformers
Electronic health records(EHR) have been used extensively by researchers lately to gain insights and use them as clinical informatics. EHR data contains structured data, as a result of having information systems in-place, and also unstructured data like clinical notes. These unstructured data have a huge scope of exploration and can derive meaningful insights. Challenges exists like the heterogeneous and multi modal nature of such data. This work provides insights into the EHR data, the datasets available for research, the tasks that can be performed on them, the methods that can be applied on them, and then demonstrates how BERT and DistilBERT can be fine-tuned on the medical datasets to predict chronic diseases like asthma, renal diseases, heart diseases and arthritis and how DISTILBERT can be a preferred option over BERT. Both the models BERT and DISTILBERT have been pre-trained and then fine tuned to predict the chronic diseases from the clinical notes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Decentralized Ride Hailing System using Blockchain and IPFS Implementation of RFID-based Lab Inventory System Monkeypox Skin Lesion Classification Using Transfer Learning Approach A Solution to the Techno-Economic Generation Expansion Planning using Enhanced Dwarf Mongoose Optimization Algorithm Citation Count Prediction Using Different Time Series Analysis Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1