Yildiz Sinangil, Sabrina M. Neuman, M. Sinangil, N. Ickes, George B. P. Bezerra, Eric Lau, Jason E. Miller, H. Hoffmann, S. Devadas, A. Chandrakasan
{"title":"一种自我感知处理器SoC,将能量监视器集成到功率转换器中以实现自适应","authors":"Yildiz Sinangil, Sabrina M. Neuman, M. Sinangil, N. Ickes, George B. P. Bezerra, Eric Lau, Jason E. Miller, H. Hoffmann, S. Devadas, A. Chandrakasan","doi":"10.1109/VLSIC.2014.6858424","DOIUrl":null,"url":null,"abstract":"This paper presents a self-aware processor with energy monitoring circuits that can measure actual energy consumption of the key blocks. The monitors are embedded into on-chip DC/DC converters and generate results within 10% of accuracy with minimal power (<;0.1%) and area (<;1%) overhead. Our system, which is implemented in 0.18μm technology, is designed to be voltage scalable from 1.8V down to 0.6V. Low-voltage SRAM operation is made possible through the use of 8T bit-cells and write-assists. The d-caches are designed to be re-configurable in associativity and size to adapt to compute- versus cache-bound phases of applications. Cache configuration is performed in <; 3 clock cycles including tag invalidation. These hardware features enable a software self-aware computation engine (SEEC) to dynamically adapt the processor to meet performance and energy goals. Measurement results show that up to 8.4× energy savings can be achieved with DVFS and self-adaptation.","PeriodicalId":381216,"journal":{"name":"2014 Symposium on VLSI Circuits Digest of Technical Papers","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"A self-aware processor SoC using energy monitors integrated into power converters for self-adaptation\",\"authors\":\"Yildiz Sinangil, Sabrina M. Neuman, M. Sinangil, N. Ickes, George B. P. Bezerra, Eric Lau, Jason E. Miller, H. Hoffmann, S. Devadas, A. Chandrakasan\",\"doi\":\"10.1109/VLSIC.2014.6858424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a self-aware processor with energy monitoring circuits that can measure actual energy consumption of the key blocks. The monitors are embedded into on-chip DC/DC converters and generate results within 10% of accuracy with minimal power (<;0.1%) and area (<;1%) overhead. Our system, which is implemented in 0.18μm technology, is designed to be voltage scalable from 1.8V down to 0.6V. Low-voltage SRAM operation is made possible through the use of 8T bit-cells and write-assists. The d-caches are designed to be re-configurable in associativity and size to adapt to compute- versus cache-bound phases of applications. Cache configuration is performed in <; 3 clock cycles including tag invalidation. These hardware features enable a software self-aware computation engine (SEEC) to dynamically adapt the processor to meet performance and energy goals. Measurement results show that up to 8.4× energy savings can be achieved with DVFS and self-adaptation.\",\"PeriodicalId\":381216,\"journal\":{\"name\":\"2014 Symposium on VLSI Circuits Digest of Technical Papers\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Symposium on VLSI Circuits Digest of Technical Papers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSIC.2014.6858424\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Symposium on VLSI Circuits Digest of Technical Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIC.2014.6858424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A self-aware processor SoC using energy monitors integrated into power converters for self-adaptation
This paper presents a self-aware processor with energy monitoring circuits that can measure actual energy consumption of the key blocks. The monitors are embedded into on-chip DC/DC converters and generate results within 10% of accuracy with minimal power (<;0.1%) and area (<;1%) overhead. Our system, which is implemented in 0.18μm technology, is designed to be voltage scalable from 1.8V down to 0.6V. Low-voltage SRAM operation is made possible through the use of 8T bit-cells and write-assists. The d-caches are designed to be re-configurable in associativity and size to adapt to compute- versus cache-bound phases of applications. Cache configuration is performed in <; 3 clock cycles including tag invalidation. These hardware features enable a software self-aware computation engine (SEEC) to dynamically adapt the processor to meet performance and energy goals. Measurement results show that up to 8.4× energy savings can be achieved with DVFS and self-adaptation.