在数据流上的滑动窗口中挖掘关闭的频繁项集

Mao Yinmin, Yang Lumin, Li Hong, C. Zhigang, L. Lixin
{"title":"在数据流上的滑动窗口中挖掘关闭的频繁项集","authors":"Mao Yinmin, Yang Lumin, Li Hong, C. Zhigang, L. Lixin","doi":"10.1109/YCICT.2009.5382407","DOIUrl":null,"url":null,"abstract":"Mining closed frequent itemsets in the sliding window is one of important topics of data streams mining. In this paper, we propose an algorithm, MCFI-SW, which mines closed frequent itemsets in the sliding window of data streams efficiently. It uses a CFP-tree based on FP-tree to record the current information in stream and prunes the obsolete items and a lot of infrequent items by operating the pointer. A novel approach is presented to mine a set of closed frequent itemsets in the CFP-tree. Theoretical analysis and experimental results show that the proposed method is efficient and scalable.","PeriodicalId":138803,"journal":{"name":"2009 IEEE Youth Conference on Information, Computing and Telecommunication","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mining closed frequent itemsets in the sliding window over data stream\",\"authors\":\"Mao Yinmin, Yang Lumin, Li Hong, C. Zhigang, L. Lixin\",\"doi\":\"10.1109/YCICT.2009.5382407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mining closed frequent itemsets in the sliding window is one of important topics of data streams mining. In this paper, we propose an algorithm, MCFI-SW, which mines closed frequent itemsets in the sliding window of data streams efficiently. It uses a CFP-tree based on FP-tree to record the current information in stream and prunes the obsolete items and a lot of infrequent items by operating the pointer. A novel approach is presented to mine a set of closed frequent itemsets in the CFP-tree. Theoretical analysis and experimental results show that the proposed method is efficient and scalable.\",\"PeriodicalId\":138803,\"journal\":{\"name\":\"2009 IEEE Youth Conference on Information, Computing and Telecommunication\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Youth Conference on Information, Computing and Telecommunication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/YCICT.2009.5382407\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Youth Conference on Information, Computing and Telecommunication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/YCICT.2009.5382407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

滑动窗口中封闭频繁项集的挖掘是数据流挖掘的重要课题之一。本文提出了一种有效挖掘数据流滑动窗口中封闭频繁项集的算法MCFI-SW。它使用基于FP-tree的CFP-tree来记录流中的当前信息,并通过操作指针来删除过时的项和大量不常用的项。提出了一种在cfp树中挖掘封闭频繁项集的新方法。理论分析和实验结果表明,该方法具有较好的有效性和可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mining closed frequent itemsets in the sliding window over data stream
Mining closed frequent itemsets in the sliding window is one of important topics of data streams mining. In this paper, we propose an algorithm, MCFI-SW, which mines closed frequent itemsets in the sliding window of data streams efficiently. It uses a CFP-tree based on FP-tree to record the current information in stream and prunes the obsolete items and a lot of infrequent items by operating the pointer. A novel approach is presented to mine a set of closed frequent itemsets in the CFP-tree. Theoretical analysis and experimental results show that the proposed method is efficient and scalable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simulation study of queues' length balance in CICQ switching fabrics Stereo-motion estimation for visual object tracking Regularization of orthogonal neural networks using fractional derivatives System identifiability for sparse and nonuniform samples via spectral analysis A probabilistic filter protocol for Continuous Nearest-Neighbor Query
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1