神经元MOS神经网络的硬件反向传播学习

H. Ishii, T. Shibata, H. Kosaka, T. Ohmi
{"title":"神经元MOS神经网络的硬件反向传播学习","authors":"H. Ishii, T. Shibata, H. Kosaka, T. Ohmi","doi":"10.1109/IEDM.1992.307395","DOIUrl":null,"url":null,"abstract":"This paper describes the design and architecture of a neural network having a hardware-learning capability, in which a functional transistor called neuron MOSFET (neuMOS or vMOS) is utilized as a key element. In order to implement learning algorithm on the chip, a new hardware-oriented backpropagation learning algorithm has been developed by modifying and simplifying the original backpropagation algorithm. In addition, a six-transistor synapse cell which is free from standby power dissipation and is capable of representing both positive and negative weights (excitatory and inhibitory synapse functions) under a single 5 V power supply has been developed for use on a self-learning chip.<<ETX>>","PeriodicalId":287098,"journal":{"name":"1992 International Technical Digest on Electron Devices Meeting","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Hardware-backpropagation learning of neuron MOS neural networks\",\"authors\":\"H. Ishii, T. Shibata, H. Kosaka, T. Ohmi\",\"doi\":\"10.1109/IEDM.1992.307395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the design and architecture of a neural network having a hardware-learning capability, in which a functional transistor called neuron MOSFET (neuMOS or vMOS) is utilized as a key element. In order to implement learning algorithm on the chip, a new hardware-oriented backpropagation learning algorithm has been developed by modifying and simplifying the original backpropagation algorithm. In addition, a six-transistor synapse cell which is free from standby power dissipation and is capable of representing both positive and negative weights (excitatory and inhibitory synapse functions) under a single 5 V power supply has been developed for use on a self-learning chip.<<ETX>>\",\"PeriodicalId\":287098,\"journal\":{\"name\":\"1992 International Technical Digest on Electron Devices Meeting\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1992 International Technical Digest on Electron Devices Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEDM.1992.307395\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1992 International Technical Digest on Electron Devices Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.1992.307395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

本文描述了一个具有硬件学习能力的神经网络的设计和结构,其中一个功能晶体管称为神经元MOSFET (neuMOS或vMOS)作为关键元件。为了在芯片上实现学习算法,对原有的反向传播算法进行了改进和简化,提出了一种新的面向硬件的反向传播学习算法。此外,已经开发出一种六晶体管突触细胞,它没有待机功耗,并且能够在单个5v电源下表示正权重和负权重(兴奋性和抑制性突触功能),用于自学习芯片。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hardware-backpropagation learning of neuron MOS neural networks
This paper describes the design and architecture of a neural network having a hardware-learning capability, in which a functional transistor called neuron MOSFET (neuMOS or vMOS) is utilized as a key element. In order to implement learning algorithm on the chip, a new hardware-oriented backpropagation learning algorithm has been developed by modifying and simplifying the original backpropagation algorithm. In addition, a six-transistor synapse cell which is free from standby power dissipation and is capable of representing both positive and negative weights (excitatory and inhibitory synapse functions) under a single 5 V power supply has been developed for use on a self-learning chip.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
New write/erase operation technology for flash EEPROM cells to improve the read disturb characteristics A high brightness electron beam produced by a ferroelectric cathode A two-dimensional analysis of hot-carrier photoemission from LOCOS- and trench-isolated MOSFETs Phase-shifting mask topography effects on lithographic image quality A fully planarized multilevel interconnection technology using selective TEOS-Ozone APCVD
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1