{"title":"优化分布式实时和嵌入式系统的通用软件仪表中间件性能","authors":"Dennis C. Feiock, James H. Hill","doi":"10.1109/ISORC.2013.6913197","DOIUrl":null,"url":null,"abstract":"Software instrumentation is an important aspect of software-intensive distributed real-time and embedded (DRE) systems because it enables real-time feedback of system properties, such as resource usage and component state, for performance analysis. Although it is critical not to collect too much instrumentation data to ensure minimal impact on the DRE system's existing performance properties, the design and implementation of software instrumentation middleware can impact how much instrumentation data can be collected. This can indirectly impact the DRE system's existing properties and performance analysis, and is more of a concern when using general-purpose software instrumentation middleware for DRE systems. This paper provides two contributions to instrumenting software-intensive DRE systems. First, it presents two techniques named the Standard Flat-rate Envelope and Pay-per-use for improving the performance of software instrumentation middleware for DRE systems. Secondly, it quantitatively evaluates performance gains realized by the two techniques in the context the Open-source Architecture for Software Instrumentation of Systems (OASIS), which is open-source dynamic instrumentation middleware for DRE systems. Our results show that the Standard Flat-rate Envelope improves performance up to 57% and the Pay-per-use improves performance up to 49%.","PeriodicalId":330873,"journal":{"name":"16th IEEE International Symposium on Object/component/service-oriented Real-time distributed Computing (ISORC 2013)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing general-purpose software instrumentation middleware performance for distributed real-time and embedded systems\",\"authors\":\"Dennis C. Feiock, James H. Hill\",\"doi\":\"10.1109/ISORC.2013.6913197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Software instrumentation is an important aspect of software-intensive distributed real-time and embedded (DRE) systems because it enables real-time feedback of system properties, such as resource usage and component state, for performance analysis. Although it is critical not to collect too much instrumentation data to ensure minimal impact on the DRE system's existing performance properties, the design and implementation of software instrumentation middleware can impact how much instrumentation data can be collected. This can indirectly impact the DRE system's existing properties and performance analysis, and is more of a concern when using general-purpose software instrumentation middleware for DRE systems. This paper provides two contributions to instrumenting software-intensive DRE systems. First, it presents two techniques named the Standard Flat-rate Envelope and Pay-per-use for improving the performance of software instrumentation middleware for DRE systems. Secondly, it quantitatively evaluates performance gains realized by the two techniques in the context the Open-source Architecture for Software Instrumentation of Systems (OASIS), which is open-source dynamic instrumentation middleware for DRE systems. Our results show that the Standard Flat-rate Envelope improves performance up to 57% and the Pay-per-use improves performance up to 49%.\",\"PeriodicalId\":330873,\"journal\":{\"name\":\"16th IEEE International Symposium on Object/component/service-oriented Real-time distributed Computing (ISORC 2013)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"16th IEEE International Symposium on Object/component/service-oriented Real-time distributed Computing (ISORC 2013)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISORC.2013.6913197\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"16th IEEE International Symposium on Object/component/service-oriented Real-time distributed Computing (ISORC 2013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISORC.2013.6913197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimizing general-purpose software instrumentation middleware performance for distributed real-time and embedded systems
Software instrumentation is an important aspect of software-intensive distributed real-time and embedded (DRE) systems because it enables real-time feedback of system properties, such as resource usage and component state, for performance analysis. Although it is critical not to collect too much instrumentation data to ensure minimal impact on the DRE system's existing performance properties, the design and implementation of software instrumentation middleware can impact how much instrumentation data can be collected. This can indirectly impact the DRE system's existing properties and performance analysis, and is more of a concern when using general-purpose software instrumentation middleware for DRE systems. This paper provides two contributions to instrumenting software-intensive DRE systems. First, it presents two techniques named the Standard Flat-rate Envelope and Pay-per-use for improving the performance of software instrumentation middleware for DRE systems. Secondly, it quantitatively evaluates performance gains realized by the two techniques in the context the Open-source Architecture for Software Instrumentation of Systems (OASIS), which is open-source dynamic instrumentation middleware for DRE systems. Our results show that the Standard Flat-rate Envelope improves performance up to 57% and the Pay-per-use improves performance up to 49%.