A. B. Nassif, Luiz Fernando Capretz, D. Ho, Mohammad Azzeh
{"title":"基于用例点的软件工作量评估Treeboost模型","authors":"A. B. Nassif, Luiz Fernando Capretz, D. Ho, Mohammad Azzeh","doi":"10.1109/ICMLA.2012.155","DOIUrl":null,"url":null,"abstract":"Software effort prediction is an important task in the software development life cycle. Many models including regression models, machine learning models, algorithmic models, expert judgment and estimation by analogy have been widely used to estimate software effort and cost. In this work, a Tree boost (Stochastic Gradient Boosting) model is put forward to predict software effort based on the Use Case Point method. The inputs of the model include software size in use case points, productivity and complexity. A multiple linear regression model was created and the Tree boost model was evaluated against the multiple linear regression model, as well as the use case point model by using four performance criteria: MMRE, PRED, MdMRE and MSE. Experiments show that the Tree boost model can be used with promising results to estimate software effort.","PeriodicalId":157399,"journal":{"name":"2012 11th International Conference on Machine Learning and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":"{\"title\":\"A Treeboost Model for Software Effort Estimation Based on Use Case Points\",\"authors\":\"A. B. Nassif, Luiz Fernando Capretz, D. Ho, Mohammad Azzeh\",\"doi\":\"10.1109/ICMLA.2012.155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Software effort prediction is an important task in the software development life cycle. Many models including regression models, machine learning models, algorithmic models, expert judgment and estimation by analogy have been widely used to estimate software effort and cost. In this work, a Tree boost (Stochastic Gradient Boosting) model is put forward to predict software effort based on the Use Case Point method. The inputs of the model include software size in use case points, productivity and complexity. A multiple linear regression model was created and the Tree boost model was evaluated against the multiple linear regression model, as well as the use case point model by using four performance criteria: MMRE, PRED, MdMRE and MSE. Experiments show that the Tree boost model can be used with promising results to estimate software effort.\",\"PeriodicalId\":157399,\"journal\":{\"name\":\"2012 11th International Conference on Machine Learning and Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"55\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 11th International Conference on Machine Learning and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2012.155\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 11th International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2012.155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Treeboost Model for Software Effort Estimation Based on Use Case Points
Software effort prediction is an important task in the software development life cycle. Many models including regression models, machine learning models, algorithmic models, expert judgment and estimation by analogy have been widely used to estimate software effort and cost. In this work, a Tree boost (Stochastic Gradient Boosting) model is put forward to predict software effort based on the Use Case Point method. The inputs of the model include software size in use case points, productivity and complexity. A multiple linear regression model was created and the Tree boost model was evaluated against the multiple linear regression model, as well as the use case point model by using four performance criteria: MMRE, PRED, MdMRE and MSE. Experiments show that the Tree boost model can be used with promising results to estimate software effort.