区间权值归一化方法的讨论

Yimeng Sui, Zhenyuan Wang
{"title":"区间权值归一化方法的讨论","authors":"Yimeng Sui, Zhenyuan Wang","doi":"10.11648/J.SJAMS.20160405.19","DOIUrl":null,"url":null,"abstract":"This paper is collecting the classic and newly normalization methods, finding deficiency of existing normalization methods for interval weights, and introducing a new normalization methods for interval weights. When we normalize the interval weights, it is very important and necessary to check whether, after normalizing, the location of interval centers as well as the length of interval weights keep the same proportion as those of original interval weights. It is found that, in some newly normalization methods, they violate these goodness criteria. In current work, for interval weights, we propose a new normalization method that reserves both proportions of the distances from interval centers to the origin and of interval lengths, and also eliminates the redundancy from the original given interval weights. This new method can be widely applied in information fusion and decision making in environments with uncertainty.","PeriodicalId":422938,"journal":{"name":"Science Journal of Applied Mathematics and Statistics","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discussion on Normalization Methods of Interval Weights\",\"authors\":\"Yimeng Sui, Zhenyuan Wang\",\"doi\":\"10.11648/J.SJAMS.20160405.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is collecting the classic and newly normalization methods, finding deficiency of existing normalization methods for interval weights, and introducing a new normalization methods for interval weights. When we normalize the interval weights, it is very important and necessary to check whether, after normalizing, the location of interval centers as well as the length of interval weights keep the same proportion as those of original interval weights. It is found that, in some newly normalization methods, they violate these goodness criteria. In current work, for interval weights, we propose a new normalization method that reserves both proportions of the distances from interval centers to the origin and of interval lengths, and also eliminates the redundancy from the original given interval weights. This new method can be widely applied in information fusion and decision making in environments with uncertainty.\",\"PeriodicalId\":422938,\"journal\":{\"name\":\"Science Journal of Applied Mathematics and Statistics\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Journal of Applied Mathematics and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.SJAMS.20160405.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Journal of Applied Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.SJAMS.20160405.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文收集了经典的归一化方法和新的归一化方法,发现了现有的区间权值归一化方法的不足,提出了一种新的区间权值归一化方法。在对区间权值进行归一化时,检验归一化后区间中心的位置和区间权值的长度与原区间权值的比例是否保持一致是非常重要和必要的。我们发现,在一些新的归一化方法中,它们违反了这些良度准则。在目前的工作中,对于区间权值,我们提出了一种新的归一化方法,该方法既保留了区间中心到原点的距离比例,也保留了区间长度比例,并且消除了原始给定区间权值的冗余。该方法可广泛应用于不确定环境下的信息融合和决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Discussion on Normalization Methods of Interval Weights
This paper is collecting the classic and newly normalization methods, finding deficiency of existing normalization methods for interval weights, and introducing a new normalization methods for interval weights. When we normalize the interval weights, it is very important and necessary to check whether, after normalizing, the location of interval centers as well as the length of interval weights keep the same proportion as those of original interval weights. It is found that, in some newly normalization methods, they violate these goodness criteria. In current work, for interval weights, we propose a new normalization method that reserves both proportions of the distances from interval centers to the origin and of interval lengths, and also eliminates the redundancy from the original given interval weights. This new method can be widely applied in information fusion and decision making in environments with uncertainty.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimization of the Non-Linear Diffussion Equations CPV Monitoring - Optimization of Control Chart Design by Reducing the False Alarm Rate and Nuisance Signal On Different Extraction Methods of Factor Analysis Improvement of the Raabe-Duhamel Convergence Criterion Generalized Volatility Modelling of Stock Returns of Selected Nigerian Oil and Gas Companies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1