利用高效netv2像素色放大技术检测糖尿病视网膜病变

Yi-Hsuan Kao, Chun-Ling Lin
{"title":"利用高效netv2像素色放大技术检测糖尿病视网膜病变","authors":"Yi-Hsuan Kao, Chun-Ling Lin","doi":"10.1109/ICASI57738.2023.10179565","DOIUrl":null,"url":null,"abstract":"This study adopts a pixel color amplification to increase the characteristics of the fundus image to solve inconsistent images quality problem and adopts EfficientNetV2 architecture of deep convolutional neural network (CNN) to detect Diabetic Retinopathy (DR). The results show that the proposed method can achieve 0.9120/87.16% of quadratic weight kappa and accuracy score and proves the efficacy of the proposed approach in DR classification. Thus, our work can help DR patients to reduce the probability of having lifelong blindness.","PeriodicalId":281254,"journal":{"name":"2023 9th International Conference on Applied System Innovation (ICASI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection of Diabetic Retinopathy via Pixel Color Amplification Using EfficientNetV2\",\"authors\":\"Yi-Hsuan Kao, Chun-Ling Lin\",\"doi\":\"10.1109/ICASI57738.2023.10179565\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study adopts a pixel color amplification to increase the characteristics of the fundus image to solve inconsistent images quality problem and adopts EfficientNetV2 architecture of deep convolutional neural network (CNN) to detect Diabetic Retinopathy (DR). The results show that the proposed method can achieve 0.9120/87.16% of quadratic weight kappa and accuracy score and proves the efficacy of the proposed approach in DR classification. Thus, our work can help DR patients to reduce the probability of having lifelong blindness.\",\"PeriodicalId\":281254,\"journal\":{\"name\":\"2023 9th International Conference on Applied System Innovation (ICASI)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 9th International Conference on Applied System Innovation (ICASI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASI57738.2023.10179565\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 9th International Conference on Applied System Innovation (ICASI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASI57738.2023.10179565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用像素彩色放大来增加眼底图像的特征,解决图像质量不一致的问题,采用深度卷积神经网络(CNN)的EfficientNetV2架构检测糖尿病视网膜病变(DR)。结果表明,该方法可以达到0.9120/87.16%的二次权kappa和准确率得分,证明了该方法在DR分类中的有效性。因此,我们的工作可以帮助DR患者减少终身失明的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detection of Diabetic Retinopathy via Pixel Color Amplification Using EfficientNetV2
This study adopts a pixel color amplification to increase the characteristics of the fundus image to solve inconsistent images quality problem and adopts EfficientNetV2 architecture of deep convolutional neural network (CNN) to detect Diabetic Retinopathy (DR). The results show that the proposed method can achieve 0.9120/87.16% of quadratic weight kappa and accuracy score and proves the efficacy of the proposed approach in DR classification. Thus, our work can help DR patients to reduce the probability of having lifelong blindness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Intelligent Detection of Disinformation Based on Chronological and Spatial Topologies Cluster based Indexing for Spatial Analysis on Read-only Database Straight-line Generation Approach using Deep Learning for Mobile Robot Guidance in Lettuce Fields Leveraging the Objective Intelligibility and Noise Estimation to Improve Conformer-Based MetricGAN Analysis of Eye-tracking System Based on Diffractive Waveguide
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1