{"title":"同步驱动的mpsoc动态速度缩放","authors":"M. Loghi, M. Poncino, L. Benini","doi":"10.1145/1165573.1165655","DOIUrl":null,"url":null,"abstract":"Equalizing the ratios between workloads and speeds of processing elements provides the optimal speed allocation. Based on that principle, this work describes a dynamic speed setting policy for multiprocessor systems-on-chip (MPSoCs) that relies on the estimation of processor idle times specifically due to the synchronization work. The policy provides two advantages: first, it does not rely on any assumption about the communication pattern of the application executed by the system. Second, it is purely architectural; it automatically detects changes in the system workload and sets processors speeds accordingly by means of a custom hardware block. Results on a parallel MPEG video decoding application show an EDP saving above 55%, averaged over several datasets, corresponding to an energy saving above 50%, and a corresponding penalty in performance below 8%","PeriodicalId":119229,"journal":{"name":"ISLPED'06 Proceedings of the 2006 International Symposium on Low Power Electronics and Design","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Synchronization-Driven Dynamic Speed Scaling for MPSoCs\",\"authors\":\"M. Loghi, M. Poncino, L. Benini\",\"doi\":\"10.1145/1165573.1165655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Equalizing the ratios between workloads and speeds of processing elements provides the optimal speed allocation. Based on that principle, this work describes a dynamic speed setting policy for multiprocessor systems-on-chip (MPSoCs) that relies on the estimation of processor idle times specifically due to the synchronization work. The policy provides two advantages: first, it does not rely on any assumption about the communication pattern of the application executed by the system. Second, it is purely architectural; it automatically detects changes in the system workload and sets processors speeds accordingly by means of a custom hardware block. Results on a parallel MPEG video decoding application show an EDP saving above 55%, averaged over several datasets, corresponding to an energy saving above 50%, and a corresponding penalty in performance below 8%\",\"PeriodicalId\":119229,\"journal\":{\"name\":\"ISLPED'06 Proceedings of the 2006 International Symposium on Low Power Electronics and Design\",\"volume\":\"105 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISLPED'06 Proceedings of the 2006 International Symposium on Low Power Electronics and Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1165573.1165655\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISLPED'06 Proceedings of the 2006 International Symposium on Low Power Electronics and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1165573.1165655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Synchronization-Driven Dynamic Speed Scaling for MPSoCs
Equalizing the ratios between workloads and speeds of processing elements provides the optimal speed allocation. Based on that principle, this work describes a dynamic speed setting policy for multiprocessor systems-on-chip (MPSoCs) that relies on the estimation of processor idle times specifically due to the synchronization work. The policy provides two advantages: first, it does not rely on any assumption about the communication pattern of the application executed by the system. Second, it is purely architectural; it automatically detects changes in the system workload and sets processors speeds accordingly by means of a custom hardware block. Results on a parallel MPEG video decoding application show an EDP saving above 55%, averaged over several datasets, corresponding to an energy saving above 50%, and a corresponding penalty in performance below 8%