{"title":"用于低功耗应用的新型隧道场效应管的设计","authors":"B. Bhowmick","doi":"10.1049/pbcs073f_ch5","DOIUrl":null,"url":null,"abstract":"In this chapter, the principle of operation of tunnel FET is discussed. Existing models and modified structures including gate, source and drain engineering are explored and investigated. It depicts the application of tunnel FET in a digital circuit and as biosensor. It is found that TFET has reduced power consumption and can be used in low-power applications. Further, it acts as a better biosensor.","PeriodicalId":413845,"journal":{"name":"VLSI and Post-CMOS Electronics. Volume 1: Design, modelling and simulation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Design of a novel tunnel FET for low-power applications\",\"authors\":\"B. Bhowmick\",\"doi\":\"10.1049/pbcs073f_ch5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this chapter, the principle of operation of tunnel FET is discussed. Existing models and modified structures including gate, source and drain engineering are explored and investigated. It depicts the application of tunnel FET in a digital circuit and as biosensor. It is found that TFET has reduced power consumption and can be used in low-power applications. Further, it acts as a better biosensor.\",\"PeriodicalId\":413845,\"journal\":{\"name\":\"VLSI and Post-CMOS Electronics. Volume 1: Design, modelling and simulation\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"VLSI and Post-CMOS Electronics. Volume 1: Design, modelling and simulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/pbcs073f_ch5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"VLSI and Post-CMOS Electronics. Volume 1: Design, modelling and simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/pbcs073f_ch5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design of a novel tunnel FET for low-power applications
In this chapter, the principle of operation of tunnel FET is discussed. Existing models and modified structures including gate, source and drain engineering are explored and investigated. It depicts the application of tunnel FET in a digital circuit and as biosensor. It is found that TFET has reduced power consumption and can be used in low-power applications. Further, it acts as a better biosensor.