{"title":"inaner:交互式血管网络编辑和修复","authors":"Valentin Z. Nigolian, T. Igarashi, Hirofumi Seo","doi":"10.1145/3332165.3347900","DOIUrl":null,"url":null,"abstract":"Vascular network reconstruction is an essential aspect of the daily practice of medical doctors working with vascular systems. Accurately representing vascular networks, not only graphically but also in a way that encompasses their structure, can be used to run simulations, plan medical procedures or identify real-life diseases, for example. A vascular network is thus reconstructed from a 3D medical image sequence via segmentation and skeletonization. Many automatic algorithms exist to do so but tend to fail for specific corner cases. On the other hand, manual methods exist as well but are tedious to use and require a lot of time. In this paper, we introduce an interactive vascular network reconstruction system called INVANER that relies on a graph-like representation of the network's structure. A general skeleton is obtained with an automatic method and medical practitioners are allowed to manually repair the local defects where this method fails. Our system uses graph-related tools with local effects and introduces two novel tools, dedicated to solving two common problems arising when automatically extracting the centerlines of vascular structures: so-called \"Kissing Vessels\" and a type of phenomenon we call \"Dotted Vessels.\"","PeriodicalId":431403,"journal":{"name":"Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"INVANER: INteractive VAscular Network Editing and Repair\",\"authors\":\"Valentin Z. Nigolian, T. Igarashi, Hirofumi Seo\",\"doi\":\"10.1145/3332165.3347900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vascular network reconstruction is an essential aspect of the daily practice of medical doctors working with vascular systems. Accurately representing vascular networks, not only graphically but also in a way that encompasses their structure, can be used to run simulations, plan medical procedures or identify real-life diseases, for example. A vascular network is thus reconstructed from a 3D medical image sequence via segmentation and skeletonization. Many automatic algorithms exist to do so but tend to fail for specific corner cases. On the other hand, manual methods exist as well but are tedious to use and require a lot of time. In this paper, we introduce an interactive vascular network reconstruction system called INVANER that relies on a graph-like representation of the network's structure. A general skeleton is obtained with an automatic method and medical practitioners are allowed to manually repair the local defects where this method fails. Our system uses graph-related tools with local effects and introduces two novel tools, dedicated to solving two common problems arising when automatically extracting the centerlines of vascular structures: so-called \\\"Kissing Vessels\\\" and a type of phenomenon we call \\\"Dotted Vessels.\\\"\",\"PeriodicalId\":431403,\"journal\":{\"name\":\"Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3332165.3347900\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3332165.3347900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
INVANER: INteractive VAscular Network Editing and Repair
Vascular network reconstruction is an essential aspect of the daily practice of medical doctors working with vascular systems. Accurately representing vascular networks, not only graphically but also in a way that encompasses their structure, can be used to run simulations, plan medical procedures or identify real-life diseases, for example. A vascular network is thus reconstructed from a 3D medical image sequence via segmentation and skeletonization. Many automatic algorithms exist to do so but tend to fail for specific corner cases. On the other hand, manual methods exist as well but are tedious to use and require a lot of time. In this paper, we introduce an interactive vascular network reconstruction system called INVANER that relies on a graph-like representation of the network's structure. A general skeleton is obtained with an automatic method and medical practitioners are allowed to manually repair the local defects where this method fails. Our system uses graph-related tools with local effects and introduces two novel tools, dedicated to solving two common problems arising when automatically extracting the centerlines of vascular structures: so-called "Kissing Vessels" and a type of phenomenon we call "Dotted Vessels."