将异质患者级数据整合到tranSMART以支持多中心研究

João Rafael Almeida, Luís Bastião Silva, A. Pazos, J. L. Oliveira
{"title":"将异质患者级数据整合到tranSMART以支持多中心研究","authors":"João Rafael Almeida, Luís Bastião Silva, A. Pazos, J. L. Oliveira","doi":"10.1109/CBMS55023.2022.00018","DOIUrl":null,"url":null,"abstract":"Many medical studies have been conducted aiming for better understanding of the causes of diseases and to assist in treatments and protective factors. In some cases, these studies do not produce impactful findings due to the small number of participants. Some initiatives already invested efforts in conducting multicentre studies, which raises other technical challenges due to the heterogeneity of datasets. The analysis of such data sources implies dealing with different data structures, terminologies, concepts, languages, and most importantly, the knowledge behind the data. In this paper, we present a methodology to centralise different datasets into the tranSMART application, using a harmonising strategy based on standard data schema. This methodology can help researchers to generate evidence from a wider variety of data sources. This proposal was validated using Alzheimer's Disease cohorts from several countries, combining at the end 6,669 subjects and 172 clinical concepts. The harmonised datasets can provide multi-cohort queries and analysis. The software package is available, under the MIT license, at https://github.com/bioinformatics-ua/tranSMART-migrator.","PeriodicalId":218475,"journal":{"name":"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combining heterogeneous patient-level data into tranSMART to support multicentre studies\",\"authors\":\"João Rafael Almeida, Luís Bastião Silva, A. Pazos, J. L. Oliveira\",\"doi\":\"10.1109/CBMS55023.2022.00018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many medical studies have been conducted aiming for better understanding of the causes of diseases and to assist in treatments and protective factors. In some cases, these studies do not produce impactful findings due to the small number of participants. Some initiatives already invested efforts in conducting multicentre studies, which raises other technical challenges due to the heterogeneity of datasets. The analysis of such data sources implies dealing with different data structures, terminologies, concepts, languages, and most importantly, the knowledge behind the data. In this paper, we present a methodology to centralise different datasets into the tranSMART application, using a harmonising strategy based on standard data schema. This methodology can help researchers to generate evidence from a wider variety of data sources. This proposal was validated using Alzheimer's Disease cohorts from several countries, combining at the end 6,669 subjects and 172 clinical concepts. The harmonised datasets can provide multi-cohort queries and analysis. The software package is available, under the MIT license, at https://github.com/bioinformatics-ua/tranSMART-migrator.\",\"PeriodicalId\":218475,\"journal\":{\"name\":\"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS55023.2022.00018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS55023.2022.00018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

已经进行了许多医学研究,目的是更好地了解疾病的原因,并协助治疗和保护因素。在某些情况下,由于参与者数量少,这些研究没有产生有影响力的结果。一些倡议已经在开展多中心研究方面投入了努力,由于数据集的异质性,这引发了其他技术挑战。对这些数据源的分析意味着要处理不同的数据结构、术语、概念、语言,最重要的是要处理数据背后的知识。在本文中,我们提出了一种方法,将不同的数据集集中到tranSMART应用程序中,使用基于标准数据模式的协调策略。这种方法可以帮助研究人员从更广泛的数据来源中产生证据。该建议通过来自多个国家的阿尔茨海默病队列验证,最终合并了6,669名受试者和172个临床概念。统一的数据集可以提供多队列查询和分析。该软件包可在MIT许可下从https://github.com/bioinformatics-ua/tranSMART-migrator获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Combining heterogeneous patient-level data into tranSMART to support multicentre studies
Many medical studies have been conducted aiming for better understanding of the causes of diseases and to assist in treatments and protective factors. In some cases, these studies do not produce impactful findings due to the small number of participants. Some initiatives already invested efforts in conducting multicentre studies, which raises other technical challenges due to the heterogeneity of datasets. The analysis of such data sources implies dealing with different data structures, terminologies, concepts, languages, and most importantly, the knowledge behind the data. In this paper, we present a methodology to centralise different datasets into the tranSMART application, using a harmonising strategy based on standard data schema. This methodology can help researchers to generate evidence from a wider variety of data sources. This proposal was validated using Alzheimer's Disease cohorts from several countries, combining at the end 6,669 subjects and 172 clinical concepts. The harmonised datasets can provide multi-cohort queries and analysis. The software package is available, under the MIT license, at https://github.com/bioinformatics-ua/tranSMART-migrator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultrasonic Carotid Blood Flow Velocimetry Based on Deep Complex Neural Network Graph-based Regional Feature Enhancing for Abdominal Multi-Organ Segmentation in CT Exploiting AI to make insulin pens smart: injection site recognition and lipodystrophy detection Subgroup Discovery Analysis of Treatment Patterns in Lung Cancer Patients Estimating Predictive Uncertainty in Gastrointestinal Polyp Segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1