基于accapsule Q-Learning的智能电网入侵检测系统强化模型

T. T. Khoei, N. Kaabouch
{"title":"基于accapsule Q-Learning的智能电网入侵检测系统强化模型","authors":"T. T. Khoei, N. Kaabouch","doi":"10.1109/eIT57321.2023.10187374","DOIUrl":null,"url":null,"abstract":"Smart grid is an innovative technology that offers efficiency, low carbon emissions, and high energy storage. However, this promising technology has several shortcomings, including limited security. In this network, Intrusion Detection System (IDS) is one of the likely targeted systems that has limited security and is prone to several cyber vulnerabilities. To address a such challenge, several studies have been proposed to detect, classify, and mitigate these attacks using Artificial Intelligence (AI) techniques, although the proposed techniques in the literature suffer from high misdetection and false alarm rates. Additionally, limited data availability motivated the researchers to use another type of AI method, namely reinforcement learning to detect and classify attacks. In this paper, we propose a deep reinforcement learning-based technique, namely Q learning and capsule network as a deep learning model to detect attacks for IDS on smart grid networks. The benchmark of CICDDOs 2019 is selected to evaluate the model in terms of accuracy, detection, misdetection, false alarm rates, training time, and prediction time. We also investigate the performance of the proposed model based on discount values of 0.001 and 0.9. The experiments demonstrate that the proposed model has acceptable results, and the model with the lower discount values provides better results.","PeriodicalId":113717,"journal":{"name":"2023 IEEE International Conference on Electro Information Technology (eIT)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ACapsule Q-Learning Based Reinforcement Model for Intrusion Detection System on Smart Grid\",\"authors\":\"T. T. Khoei, N. Kaabouch\",\"doi\":\"10.1109/eIT57321.2023.10187374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Smart grid is an innovative technology that offers efficiency, low carbon emissions, and high energy storage. However, this promising technology has several shortcomings, including limited security. In this network, Intrusion Detection System (IDS) is one of the likely targeted systems that has limited security and is prone to several cyber vulnerabilities. To address a such challenge, several studies have been proposed to detect, classify, and mitigate these attacks using Artificial Intelligence (AI) techniques, although the proposed techniques in the literature suffer from high misdetection and false alarm rates. Additionally, limited data availability motivated the researchers to use another type of AI method, namely reinforcement learning to detect and classify attacks. In this paper, we propose a deep reinforcement learning-based technique, namely Q learning and capsule network as a deep learning model to detect attacks for IDS on smart grid networks. The benchmark of CICDDOs 2019 is selected to evaluate the model in terms of accuracy, detection, misdetection, false alarm rates, training time, and prediction time. We also investigate the performance of the proposed model based on discount values of 0.001 and 0.9. The experiments demonstrate that the proposed model has acceptable results, and the model with the lower discount values provides better results.\",\"PeriodicalId\":113717,\"journal\":{\"name\":\"2023 IEEE International Conference on Electro Information Technology (eIT)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Electro Information Technology (eIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/eIT57321.2023.10187374\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Electro Information Technology (eIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/eIT57321.2023.10187374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

智能电网是一项创新技术,具有高效、低碳排放和高能量存储的特点。然而,这种有前途的技术有几个缺点,包括有限的安全性。在这个网络中,入侵检测系统(IDS)是可能被攻击的目标系统之一,其安全性有限,容易出现一些网络漏洞。为了应对这样的挑战,一些研究已经提出使用人工智能(AI)技术来检测、分类和减轻这些攻击,尽管文献中提出的技术存在较高的误检和误报率。此外,有限的数据可用性促使研究人员使用另一种人工智能方法,即强化学习来检测和分类攻击。在本文中,我们提出了一种基于深度强化学习的技术,即Q学习和胶囊网络作为深度学习模型来检测智能电网上的IDS攻击。选取CICDDOs 2019的基准,从准确率、检测、误检、虚警率、训练时间、预测时间等方面对模型进行评价。我们还研究了基于0.001和0.9的折扣值所提出的模型的性能。实验结果表明,所提模型具有可接受的结果,且折扣值越低的模型效果越好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ACapsule Q-Learning Based Reinforcement Model for Intrusion Detection System on Smart Grid
Smart grid is an innovative technology that offers efficiency, low carbon emissions, and high energy storage. However, this promising technology has several shortcomings, including limited security. In this network, Intrusion Detection System (IDS) is one of the likely targeted systems that has limited security and is prone to several cyber vulnerabilities. To address a such challenge, several studies have been proposed to detect, classify, and mitigate these attacks using Artificial Intelligence (AI) techniques, although the proposed techniques in the literature suffer from high misdetection and false alarm rates. Additionally, limited data availability motivated the researchers to use another type of AI method, namely reinforcement learning to detect and classify attacks. In this paper, we propose a deep reinforcement learning-based technique, namely Q learning and capsule network as a deep learning model to detect attacks for IDS on smart grid networks. The benchmark of CICDDOs 2019 is selected to evaluate the model in terms of accuracy, detection, misdetection, false alarm rates, training time, and prediction time. We also investigate the performance of the proposed model based on discount values of 0.001 and 0.9. The experiments demonstrate that the proposed model has acceptable results, and the model with the lower discount values provides better results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Correlation of Egg counts, Micro-nutrients, and NDVI Distribution for Accurate Tracking of SCN Population Density Detection Supervised Deep Learning Models for Detecting GPS Spoofing Attacks on Unmanned Aerial Vehicles ChatGPT: A Threat Against the CIA Triad of Cyber Security Smart UX-design for Rescue Operations Wearable - A Knowledge Graph Informed Visualization Approach for Information Retrieval in Emergency Situations Comparative Study of Deep Learning LSTM and 1D-CNN Models for Real-time Flood Prediction in Red River of the North, USA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1