使用倒数进行整数除法

Robert Alverson
{"title":"使用倒数进行整数除法","authors":"Robert Alverson","doi":"10.1109/ARITH.1991.145558","DOIUrl":null,"url":null,"abstract":"By using a reciprocal approximation, integer division can be synthesized from a multiply followed by a shift. Without carefully selecting the reciprocal, however, the quotient obtained often suffers from off-by-one errors, requiring a correction step. The author describes the design decisions made when designing integer division for a new 64-b machine. The result is a fast and economical scheme for computing both unsigned and signed integer quotients which guarantees an exact answer without any correction. The reciprocal computation is fast enough, with one table lookup and five multiplies, so that this scheme is competitive with a dedicated divider, while requiring much less hardware specific to division. The real strength of the proposed method is division by a constant, which takes only a single multiply and shift, one operation on the machine considered. The analysis shows that the computed quotient is always exact: no adjustment or correction is necessary.<<ETX>>","PeriodicalId":190650,"journal":{"name":"[1991] Proceedings 10th IEEE Symposium on Computer Arithmetic","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Integer division using reciprocals\",\"authors\":\"Robert Alverson\",\"doi\":\"10.1109/ARITH.1991.145558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By using a reciprocal approximation, integer division can be synthesized from a multiply followed by a shift. Without carefully selecting the reciprocal, however, the quotient obtained often suffers from off-by-one errors, requiring a correction step. The author describes the design decisions made when designing integer division for a new 64-b machine. The result is a fast and economical scheme for computing both unsigned and signed integer quotients which guarantees an exact answer without any correction. The reciprocal computation is fast enough, with one table lookup and five multiplies, so that this scheme is competitive with a dedicated divider, while requiring much less hardware specific to division. The real strength of the proposed method is division by a constant, which takes only a single multiply and shift, one operation on the machine considered. The analysis shows that the computed quotient is always exact: no adjustment or correction is necessary.<<ETX>>\",\"PeriodicalId\":190650,\"journal\":{\"name\":\"[1991] Proceedings 10th IEEE Symposium on Computer Arithmetic\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1991] Proceedings 10th IEEE Symposium on Computer Arithmetic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARITH.1991.145558\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991] Proceedings 10th IEEE Symposium on Computer Arithmetic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARITH.1991.145558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

通过使用倒数近似,整数除法可以由一个乘和一个移位合成。然而,如果不仔细选择倒数,所得到的商通常会有差1的误差,需要进行修正。作者描述了在为一台新的64-b机器设计整数除法时所做的设计决策。结果是一个快速和经济的方案,计算无符号和有符号整数商,保证准确的答案,而不需要任何修正。倒数计算足够快,只需一次表查找和五次乘法,因此该方案可以与专用除法器竞争,同时需要更少的专用于除法的硬件。所提出的方法的真正优点是除以一个常数,它只需要一次乘法和移位,在机器上考虑一次操作。分析表明,计算出的商数总是准确的,不需要调整或修正
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integer division using reciprocals
By using a reciprocal approximation, integer division can be synthesized from a multiply followed by a shift. Without carefully selecting the reciprocal, however, the quotient obtained often suffers from off-by-one errors, requiring a correction step. The author describes the design decisions made when designing integer division for a new 64-b machine. The result is a fast and economical scheme for computing both unsigned and signed integer quotients which guarantees an exact answer without any correction. The reciprocal computation is fast enough, with one table lookup and five multiplies, so that this scheme is competitive with a dedicated divider, while requiring much less hardware specific to division. The real strength of the proposed method is division by a constant, which takes only a single multiply and shift, one operation on the machine considered. The analysis shows that the computed quotient is always exact: no adjustment or correction is necessary.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A redundant binary Euclidean GCD algorithm OCAPI: architecture of a VLSI coprocessor for the GCD and the extended GCD of large numbers Implementation and analysis of extended SLI operations Optimal purely systolic addition Shallow multiplication circuits
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1