用于相关反馈检索的内核va文件

Douglas R. Heisterkamp, Jing Peng
{"title":"用于相关反馈检索的内核va文件","authors":"Douglas R. Heisterkamp, Jing Peng","doi":"10.1145/951676.951686","DOIUrl":null,"url":null,"abstract":"Many data partitioning index methods perform poorly in high dimensional space and do not support relevance feedback retrieval. The vector approximation file (VA-File) approach overcomes some of the difficulties of high dimensional vector spaces, but cannot be applied to relevance feedback retrieval using kernel distances in the data measurement space. This paper introduces a novel KVA-File (kernel VA-File) that extends VA-File to kernel-based retrieval methods. A key observation is that kernel distances may be non-linear in the data measurement space but is still linear in an induced feature space. It is this linear invariance in the induced feature space that enables KVA-File to work with kernel distances. An efficient approach to approximating vectors in an induced feature space is presented with the corresponding upper and lower distance bounds. Thus an effective indexing method is provided for kernel-based relevance feedback image retrieval methods. Experimental results using large image data sets (approximately 100,000 images with 463 dimensions of measurement) validate the efficacy of our method.","PeriodicalId":415406,"journal":{"name":"ACM International Workshop on Multimedia Databases","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Kernel VA-files for relevance feedback retrieva\",\"authors\":\"Douglas R. Heisterkamp, Jing Peng\",\"doi\":\"10.1145/951676.951686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many data partitioning index methods perform poorly in high dimensional space and do not support relevance feedback retrieval. The vector approximation file (VA-File) approach overcomes some of the difficulties of high dimensional vector spaces, but cannot be applied to relevance feedback retrieval using kernel distances in the data measurement space. This paper introduces a novel KVA-File (kernel VA-File) that extends VA-File to kernel-based retrieval methods. A key observation is that kernel distances may be non-linear in the data measurement space but is still linear in an induced feature space. It is this linear invariance in the induced feature space that enables KVA-File to work with kernel distances. An efficient approach to approximating vectors in an induced feature space is presented with the corresponding upper and lower distance bounds. Thus an effective indexing method is provided for kernel-based relevance feedback image retrieval methods. Experimental results using large image data sets (approximately 100,000 images with 463 dimensions of measurement) validate the efficacy of our method.\",\"PeriodicalId\":415406,\"journal\":{\"name\":\"ACM International Workshop on Multimedia Databases\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM International Workshop on Multimedia Databases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/951676.951686\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM International Workshop on Multimedia Databases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/951676.951686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

许多数据分区索引方法在高维空间中表现不佳,不支持相关反馈检索。向量逼近文件(VA-File)方法克服了高维向量空间的一些困难,但不能应用于利用数据测量空间中的核距离进行相关反馈检索。本文介绍了一种新的KVA-File(内核VA-File),它将VA-File扩展到基于内核的检索方法。一个关键的观察是,核距离在数据测量空间中可能是非线性的,但在诱导特征空间中仍然是线性的。正是这种诱导特征空间中的线性不变性使KVA-File能够处理内核距离。提出了一种在诱导特征空间中近似向量的有效方法,并给出了相应的上下距离边界。从而为基于核的相关反馈图像检索方法提供了一种有效的索引方法。使用大型图像数据集(约100,000张图像,463个测量维度)的实验结果验证了我们的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Kernel VA-files for relevance feedback retrieva
Many data partitioning index methods perform poorly in high dimensional space and do not support relevance feedback retrieval. The vector approximation file (VA-File) approach overcomes some of the difficulties of high dimensional vector spaces, but cannot be applied to relevance feedback retrieval using kernel distances in the data measurement space. This paper introduces a novel KVA-File (kernel VA-File) that extends VA-File to kernel-based retrieval methods. A key observation is that kernel distances may be non-linear in the data measurement space but is still linear in an induced feature space. It is this linear invariance in the induced feature space that enables KVA-File to work with kernel distances. An efficient approach to approximating vectors in an induced feature space is presented with the corresponding upper and lower distance bounds. Thus an effective indexing method is provided for kernel-based relevance feedback image retrieval methods. Experimental results using large image data sets (approximately 100,000 images with 463 dimensions of measurement) validate the efficacy of our method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic image annotation and retrieval using subspace clustering algorithm Indexing of variable length multi-attribute motion data A motion based scene tree for browsing and retrieval of compressed videos VRules: an effective association-based classifier for videos Content-based sub-image retrieval using relevance feedback
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1