Matthew B. Heintzelman, Jonathan Owen, S. Blunt, Brianna Maio, Erick Steinbach
{"title":"非重复波形最优失匹配滤波的实际考虑","authors":"Matthew B. Heintzelman, Jonathan Owen, S. Blunt, Brianna Maio, Erick Steinbach","doi":"10.1109/RadarConf2351548.2023.10149706","DOIUrl":null,"url":null,"abstract":"We consider the intersection between nonrepeating random FM (RFM) waveforms and practical forms of optimal mismatched filtering (MMF). Specifically, the spectrally-shaped inverse filter (SIF) is a well-known approximation to the least-squares (LS-MMF) that provides significant computational savings. Given that nonrepeating waveforms likewise require unique nonrepeating MMFs, this efficient form is an attractive option. Moreover, both RFM waveforms and the SIF rely on spectrum shaping, which establishes a relationship between the goodness of a particular waveform and the mismatch loss (MML) the corresponding filter can achieve. Both simulated and open-air experimental results are shown to demonstrate performance.","PeriodicalId":168311,"journal":{"name":"2023 IEEE Radar Conference (RadarConf23)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Practical Considerations for Optimal Mismatched Filtering of Nonrepeating Waveforms\",\"authors\":\"Matthew B. Heintzelman, Jonathan Owen, S. Blunt, Brianna Maio, Erick Steinbach\",\"doi\":\"10.1109/RadarConf2351548.2023.10149706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the intersection between nonrepeating random FM (RFM) waveforms and practical forms of optimal mismatched filtering (MMF). Specifically, the spectrally-shaped inverse filter (SIF) is a well-known approximation to the least-squares (LS-MMF) that provides significant computational savings. Given that nonrepeating waveforms likewise require unique nonrepeating MMFs, this efficient form is an attractive option. Moreover, both RFM waveforms and the SIF rely on spectrum shaping, which establishes a relationship between the goodness of a particular waveform and the mismatch loss (MML) the corresponding filter can achieve. Both simulated and open-air experimental results are shown to demonstrate performance.\",\"PeriodicalId\":168311,\"journal\":{\"name\":\"2023 IEEE Radar Conference (RadarConf23)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Radar Conference (RadarConf23)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RadarConf2351548.2023.10149706\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Radar Conference (RadarConf23)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RadarConf2351548.2023.10149706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Practical Considerations for Optimal Mismatched Filtering of Nonrepeating Waveforms
We consider the intersection between nonrepeating random FM (RFM) waveforms and practical forms of optimal mismatched filtering (MMF). Specifically, the spectrally-shaped inverse filter (SIF) is a well-known approximation to the least-squares (LS-MMF) that provides significant computational savings. Given that nonrepeating waveforms likewise require unique nonrepeating MMFs, this efficient form is an attractive option. Moreover, both RFM waveforms and the SIF rely on spectrum shaping, which establishes a relationship between the goodness of a particular waveform and the mismatch loss (MML) the corresponding filter can achieve. Both simulated and open-air experimental results are shown to demonstrate performance.