利用三维运动反馈改进噪声对应

Yong C. Kim, K. Price
{"title":"利用三维运动反馈改进噪声对应","authors":"Yong C. Kim, K. Price","doi":"10.1109/CVPR.1992.223245","DOIUrl":null,"url":null,"abstract":"In automated feature-based motion analysis of multiple frames, correspondence data are usually noisy and fragmented. A technique that gradually refines the initial noisy correspondence data and links fragments of a single trajectory using feedback from 3D motion estimation is presented. First, 3D motion parameters are estimated using the initial correspondence data. Then, each noisy trajectory is partitioned into subsets of points, each of which conforms to the estimated motion. The best set is used as the input to the next motion estimation. This process is repeated, and the gaps in the refined correspondence data are filled by guidance from the predicted motion. Test results for a standard real image sequence are presented.<<ETX>>","PeriodicalId":325476,"journal":{"name":"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Refinement of noisy correspondence using feedback from 3D motion\",\"authors\":\"Yong C. Kim, K. Price\",\"doi\":\"10.1109/CVPR.1992.223245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In automated feature-based motion analysis of multiple frames, correspondence data are usually noisy and fragmented. A technique that gradually refines the initial noisy correspondence data and links fragments of a single trajectory using feedback from 3D motion estimation is presented. First, 3D motion parameters are estimated using the initial correspondence data. Then, each noisy trajectory is partitioned into subsets of points, each of which conforms to the estimated motion. The best set is used as the input to the next motion estimation. This process is repeated, and the gaps in the refined correspondence data are filled by guidance from the predicted motion. Test results for a standard real image sequence are presented.<<ETX>>\",\"PeriodicalId\":325476,\"journal\":{\"name\":\"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.1992.223245\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.1992.223245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在基于特征的多帧自动运动分析中,对应数据通常是嘈杂和碎片化的。提出了一种利用三维运动估计反馈逐步细化初始噪声对应数据并链接单个轨迹碎片的技术。首先,利用初始对应数据估计三维运动参数;然后,将每个噪声轨迹划分为点子集,每个点子集都符合估计的运动。最好的集合被用作下一个运动估计的输入。这个过程是重复的,并且精确对应数据中的空白由预测运动的引导填充。给出了一个标准真实图像序列的测试结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Refinement of noisy correspondence using feedback from 3D motion
In automated feature-based motion analysis of multiple frames, correspondence data are usually noisy and fragmented. A technique that gradually refines the initial noisy correspondence data and links fragments of a single trajectory using feedback from 3D motion estimation is presented. First, 3D motion parameters are estimated using the initial correspondence data. Then, each noisy trajectory is partitioned into subsets of points, each of which conforms to the estimated motion. The best set is used as the input to the next motion estimation. This process is repeated, and the gaps in the refined correspondence data are filled by guidance from the predicted motion. Test results for a standard real image sequence are presented.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Motion trajectories An heterogeneous M-SIMD architecture for Kalman filter controlled processing of image sequences Recognizing 3D objects from 2D images: an error analysis On the derivation of geometric constraints in stereo Computing stereo correspondences in the presence of narrow occluding objects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1