F. Telesio, F. Mezzadri, Manuel Serrano Ruiz, M. Peruzzini, F. Bisio, S. Heun, F. Fabbri
{"title":"嵌入电介质聚合物的纳米结构铌条纹中可见光的传播","authors":"F. Telesio, F. Mezzadri, Manuel Serrano Ruiz, M. Peruzzini, F. Bisio, S. Heun, F. Fabbri","doi":"10.1088/2633-4356/aca5dd","DOIUrl":null,"url":null,"abstract":"\n Nanometric metallic stripes allow the transmission of optical signals via the excitation and propagation of surface-localized evanescent electromagnetic waves, with important applications in the field of nano-photonics. Whereas this kind of plasmonic phenomena typically exploits noble metals, like Ag or Au, other materials can exhibit viable light-transport efficiency. In this work, we demonstrate the transport of visible light in nanometric niobium stripes coupled with a dielectric polymeric layer, exploiting the remotely-excited/detected Raman signal of black phosphorus (bP) as the probe. The light-transport mechanism is ascribed to the generation of surface plasmon polaritons at the Nb/polymer interface. The propagation length is limited due to the lossy nature of niobium in the optical range, but this material may allow the exploitation of specific functionalities that are absent in noble-metal counterparts.","PeriodicalId":345750,"journal":{"name":"Materials for Quantum Technology","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Propagation of visible light in nanostructured niobium stripes embedded in a dielectric polymer\",\"authors\":\"F. Telesio, F. Mezzadri, Manuel Serrano Ruiz, M. Peruzzini, F. Bisio, S. Heun, F. Fabbri\",\"doi\":\"10.1088/2633-4356/aca5dd\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Nanometric metallic stripes allow the transmission of optical signals via the excitation and propagation of surface-localized evanescent electromagnetic waves, with important applications in the field of nano-photonics. Whereas this kind of plasmonic phenomena typically exploits noble metals, like Ag or Au, other materials can exhibit viable light-transport efficiency. In this work, we demonstrate the transport of visible light in nanometric niobium stripes coupled with a dielectric polymeric layer, exploiting the remotely-excited/detected Raman signal of black phosphorus (bP) as the probe. The light-transport mechanism is ascribed to the generation of surface plasmon polaritons at the Nb/polymer interface. The propagation length is limited due to the lossy nature of niobium in the optical range, but this material may allow the exploitation of specific functionalities that are absent in noble-metal counterparts.\",\"PeriodicalId\":345750,\"journal\":{\"name\":\"Materials for Quantum Technology\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials for Quantum Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2633-4356/aca5dd\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials for Quantum Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2633-4356/aca5dd","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Propagation of visible light in nanostructured niobium stripes embedded in a dielectric polymer
Nanometric metallic stripes allow the transmission of optical signals via the excitation and propagation of surface-localized evanescent electromagnetic waves, with important applications in the field of nano-photonics. Whereas this kind of plasmonic phenomena typically exploits noble metals, like Ag or Au, other materials can exhibit viable light-transport efficiency. In this work, we demonstrate the transport of visible light in nanometric niobium stripes coupled with a dielectric polymeric layer, exploiting the remotely-excited/detected Raman signal of black phosphorus (bP) as the probe. The light-transport mechanism is ascribed to the generation of surface plasmon polaritons at the Nb/polymer interface. The propagation length is limited due to the lossy nature of niobium in the optical range, but this material may allow the exploitation of specific functionalities that are absent in noble-metal counterparts.