基于遗传算法的非线性系统多目标控制设计

A. Hajiloo, W. Xie
{"title":"基于遗传算法的非线性系统多目标控制设计","authors":"A. Hajiloo, W. Xie","doi":"10.1109/INISTA.2014.6873593","DOIUrl":null,"url":null,"abstract":"The problem of multi-objective feedback controller design of nonlinear systems is solved in this paper. The T-S fuzzy model is adopted to describe the nonlinear systems and genetic algorithm is used to identify the T-S fuzzy model. The identified T-S fuzzy model is reduced by applying Higher Order Singular Value Decomposition (HOSVD) method. Based on the reduced T-S fuzzy model, an optimal state feedback controller is designed by achieving the trade-off among three conflicting object functions using the optimal Pareto frontier. The simulation results reveal the effectiveness of the proposed method.","PeriodicalId":339652,"journal":{"name":"2014 IEEE International Symposium on Innovations in Intelligent Systems and Applications (INISTA) Proceedings","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Multi-objective control design of the nonlinear systems using genetic algorithm\",\"authors\":\"A. Hajiloo, W. Xie\",\"doi\":\"10.1109/INISTA.2014.6873593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of multi-objective feedback controller design of nonlinear systems is solved in this paper. The T-S fuzzy model is adopted to describe the nonlinear systems and genetic algorithm is used to identify the T-S fuzzy model. The identified T-S fuzzy model is reduced by applying Higher Order Singular Value Decomposition (HOSVD) method. Based on the reduced T-S fuzzy model, an optimal state feedback controller is designed by achieving the trade-off among three conflicting object functions using the optimal Pareto frontier. The simulation results reveal the effectiveness of the proposed method.\",\"PeriodicalId\":339652,\"journal\":{\"name\":\"2014 IEEE International Symposium on Innovations in Intelligent Systems and Applications (INISTA) Proceedings\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Symposium on Innovations in Intelligent Systems and Applications (INISTA) Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INISTA.2014.6873593\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Symposium on Innovations in Intelligent Systems and Applications (INISTA) Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INISTA.2014.6873593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文解决了非线性系统的多目标反馈控制器设计问题。采用T-S模糊模型对非线性系统进行描述,并采用遗传算法对T-S模糊模型进行辨识。采用高阶奇异值分解(HOSVD)方法对识别出的T-S模糊模型进行约简。在简化T-S模糊模型的基础上,利用最优Pareto边界实现三个冲突目标函数之间的权衡,设计了最优状态反馈控制器。仿真结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-objective control design of the nonlinear systems using genetic algorithm
The problem of multi-objective feedback controller design of nonlinear systems is solved in this paper. The T-S fuzzy model is adopted to describe the nonlinear systems and genetic algorithm is used to identify the T-S fuzzy model. The identified T-S fuzzy model is reduced by applying Higher Order Singular Value Decomposition (HOSVD) method. Based on the reduced T-S fuzzy model, an optimal state feedback controller is designed by achieving the trade-off among three conflicting object functions using the optimal Pareto frontier. The simulation results reveal the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Multi-Objective Graph-based Genetic Algorithm for image segmentation Threat assessment for GPS navigation Elastic constant identification of laminated composite beam with metaheuristic algorithms Optimization of waiting and journey time in group elevator system using genetic algorithm Multilayer medium technique for nondestructive EM-properties measurement of radar absorbing materials using flanged rectangular waveguide sensor and FDTD method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1