基于机器学习的模拟电路故障诊断

K. Huang, H. Stratigopoulos, S. Mir
{"title":"基于机器学习的模拟电路故障诊断","authors":"K. Huang, H. Stratigopoulos, S. Mir","doi":"10.1109/DATE.2010.5457099","DOIUrl":null,"url":null,"abstract":"We discuss a fault diagnosis scheme for analog integrated circuits. Our approach is based on an assemblage of learning machines that are trained beforehand to guide us through diagnosis decisions. The central learning machine is a defect filter that distinguishes failing devices due to gross defects (hard faults) from failing devices due to excessive parametric deviations (soft faults). Thus, the defect filter is key in developing a unified hard/soft fault diagnosis approach. Two types of diagnosis can be carried out according to the decision of the defect filter: hard faults are diagnosed using a multi-class classifier, whereas soft faults are diagnosed using inverse regression functions. We show how this approach can be used to single out diagnostic scenarios in an RF low noise amplifier (LNA).","PeriodicalId":432902,"journal":{"name":"2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":"{\"title\":\"Fault diagnosis of analog circuits based on machine learning\",\"authors\":\"K. Huang, H. Stratigopoulos, S. Mir\",\"doi\":\"10.1109/DATE.2010.5457099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss a fault diagnosis scheme for analog integrated circuits. Our approach is based on an assemblage of learning machines that are trained beforehand to guide us through diagnosis decisions. The central learning machine is a defect filter that distinguishes failing devices due to gross defects (hard faults) from failing devices due to excessive parametric deviations (soft faults). Thus, the defect filter is key in developing a unified hard/soft fault diagnosis approach. Two types of diagnosis can be carried out according to the decision of the defect filter: hard faults are diagnosed using a multi-class classifier, whereas soft faults are diagnosed using inverse regression functions. We show how this approach can be used to single out diagnostic scenarios in an RF low noise amplifier (LNA).\",\"PeriodicalId\":432902,\"journal\":{\"name\":\"2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"50\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DATE.2010.5457099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DATE.2010.5457099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50

摘要

讨论了模拟集成电路的故障诊断方案。我们的方法是基于一组学习机器,这些机器事先经过训练,可以指导我们做出诊断决策。中央学习机是一个缺陷过滤器,可以区分由于严重缺陷(硬故障)导致的故障设备和由于参数偏差过大(软故障)导致的故障设备。因此,缺陷滤波是建立统一的硬/软故障诊断方法的关键。根据缺陷滤波器的选择,可进行两种诊断:采用多类分类器诊断硬故障,采用逆回归函数诊断软故障。我们展示了如何使用这种方法在RF低噪声放大器(LNA)中挑选诊断场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fault diagnosis of analog circuits based on machine learning
We discuss a fault diagnosis scheme for analog integrated circuits. Our approach is based on an assemblage of learning machines that are trained beforehand to guide us through diagnosis decisions. The central learning machine is a defect filter that distinguishes failing devices due to gross defects (hard faults) from failing devices due to excessive parametric deviations (soft faults). Thus, the defect filter is key in developing a unified hard/soft fault diagnosis approach. Two types of diagnosis can be carried out according to the decision of the defect filter: hard faults are diagnosed using a multi-class classifier, whereas soft faults are diagnosed using inverse regression functions. We show how this approach can be used to single out diagnostic scenarios in an RF low noise amplifier (LNA).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High temperature polymer capacitors for aerospace applications Control network generator for latency insensitive designs Low-complexity high throughput VLSI architecture of soft-output ML MIMO detector Energy-efficient real-time task scheduling with temperature-dependent leakage A GPU based implementation of Center-Surround Distribution Distance for feature extraction and matching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1