基于人工神经网络的比利时风电预测

Jyothi Varanasi, M. M. Tripathi
{"title":"基于人工神经网络的比利时风电预测","authors":"Jyothi Varanasi, M. M. Tripathi","doi":"10.1109/POWERI.2016.8077378","DOIUrl":null,"url":null,"abstract":"Power generation from renewable energy sources needs great attention for future power sector to meet steadily increasing power demand and to reduce global warming. But, wind power generation is very unsure and intermittent in its nature. Wind power forecasting assists grid integration of enormous capacity wind farms to great extent. Grid stability is greatly accrued with the help of correct wind power forecasting This paper describes the suitability of NARX Artificial neural network in wind power forecasting with the historical power data accessible from European nation Belgium wind farms and meteorological information for wind speed.","PeriodicalId":332286,"journal":{"name":"2016 IEEE 7th Power India International Conference (PIICON)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Artificial neural network based wind power forecasting in belgium\",\"authors\":\"Jyothi Varanasi, M. M. Tripathi\",\"doi\":\"10.1109/POWERI.2016.8077378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Power generation from renewable energy sources needs great attention for future power sector to meet steadily increasing power demand and to reduce global warming. But, wind power generation is very unsure and intermittent in its nature. Wind power forecasting assists grid integration of enormous capacity wind farms to great extent. Grid stability is greatly accrued with the help of correct wind power forecasting This paper describes the suitability of NARX Artificial neural network in wind power forecasting with the historical power data accessible from European nation Belgium wind farms and meteorological information for wind speed.\",\"PeriodicalId\":332286,\"journal\":{\"name\":\"2016 IEEE 7th Power India International Conference (PIICON)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 7th Power India International Conference (PIICON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/POWERI.2016.8077378\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 7th Power India International Conference (PIICON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/POWERI.2016.8077378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

为满足不断增长的电力需求和减缓全球变暖,未来电力部门需要高度重视可再生能源发电。但是,风力发电在本质上是非常不确定和间歇性的。风电预测在很大程度上有助于大容量风电场的并网。本文以欧洲国家比利时风电场的历史功率数据和风速气象资料为例,介绍了NARX人工神经网络在风电预测中的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Artificial neural network based wind power forecasting in belgium
Power generation from renewable energy sources needs great attention for future power sector to meet steadily increasing power demand and to reduce global warming. But, wind power generation is very unsure and intermittent in its nature. Wind power forecasting assists grid integration of enormous capacity wind farms to great extent. Grid stability is greatly accrued with the help of correct wind power forecasting This paper describes the suitability of NARX Artificial neural network in wind power forecasting with the historical power data accessible from European nation Belgium wind farms and meteorological information for wind speed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detection of power quality disturbances in the utility grid with solar energy using S-transform Full bridge level doubling network assisted multilevel DC link inverter Distribution system expansion planning incorporating distributed generation A solar PV system controlled by least sum of exponentials algorithm Photo-voltaic system for refrigeration plants in isolated areas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1