使用四叉树和三角形计算近似Voronoi图

T. E. Dettling, Byron DeVries, C. Trefftz
{"title":"使用四叉树和三角形计算近似Voronoi图","authors":"T. E. Dettling, Byron DeVries, C. Trefftz","doi":"10.1109/eIT57321.2023.10187239","DOIUrl":null,"url":null,"abstract":"Calculating Voronoi diagrams quickly is useful across a range of fields and application areas. However, existing divide-and-conquer methods decompose into squares while boundaries between Voronoi diagram regions are often not perfectly horizontal or vertical. In this paper we introduce a novel method of dividing Approximate Voronoi Diagram spaces into triangles stored by quadtree data structures. While our implementation stores the resulting Voronoi diagram in a data structure, rather than setting each approximated point to its closest region, we provide a comparison of the decomposition time alone.","PeriodicalId":113717,"journal":{"name":"2023 IEEE International Conference on Electro Information Technology (eIT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calculating an Approximate Voronoi Diagram using QuadTrees and Triangles\",\"authors\":\"T. E. Dettling, Byron DeVries, C. Trefftz\",\"doi\":\"10.1109/eIT57321.2023.10187239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Calculating Voronoi diagrams quickly is useful across a range of fields and application areas. However, existing divide-and-conquer methods decompose into squares while boundaries between Voronoi diagram regions are often not perfectly horizontal or vertical. In this paper we introduce a novel method of dividing Approximate Voronoi Diagram spaces into triangles stored by quadtree data structures. While our implementation stores the resulting Voronoi diagram in a data structure, rather than setting each approximated point to its closest region, we provide a comparison of the decomposition time alone.\",\"PeriodicalId\":113717,\"journal\":{\"name\":\"2023 IEEE International Conference on Electro Information Technology (eIT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Electro Information Technology (eIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/eIT57321.2023.10187239\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Electro Information Technology (eIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/eIT57321.2023.10187239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

快速计算Voronoi图在一系列领域和应用领域都很有用。然而,现有的分治方法分解成正方形,而Voronoi图区域之间的边界往往不是完全水平或垂直的。本文介绍了一种用四叉树数据结构将近似Voronoi图空间划分为三角形的新方法。虽然我们的实现将生成的Voronoi图存储在一个数据结构中,而不是将每个近似点设置为最近的区域,但我们仅提供了分解时间的比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Calculating an Approximate Voronoi Diagram using QuadTrees and Triangles
Calculating Voronoi diagrams quickly is useful across a range of fields and application areas. However, existing divide-and-conquer methods decompose into squares while boundaries between Voronoi diagram regions are often not perfectly horizontal or vertical. In this paper we introduce a novel method of dividing Approximate Voronoi Diagram spaces into triangles stored by quadtree data structures. While our implementation stores the resulting Voronoi diagram in a data structure, rather than setting each approximated point to its closest region, we provide a comparison of the decomposition time alone.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Correlation of Egg counts, Micro-nutrients, and NDVI Distribution for Accurate Tracking of SCN Population Density Detection Supervised Deep Learning Models for Detecting GPS Spoofing Attacks on Unmanned Aerial Vehicles ChatGPT: A Threat Against the CIA Triad of Cyber Security Smart UX-design for Rescue Operations Wearable - A Knowledge Graph Informed Visualization Approach for Information Retrieval in Emergency Situations Comparative Study of Deep Learning LSTM and 1D-CNN Models for Real-time Flood Prediction in Red River of the North, USA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1