群组推荐系统中一种改进的基于Cat群搜索的深度集成学习模型

Deepjyoti Roy, M. Dutta
{"title":"群组推荐系统中一种改进的基于Cat群搜索的深度集成学习模型","authors":"Deepjyoti Roy, M. Dutta","doi":"10.1142/s0219649222500320","DOIUrl":null,"url":null,"abstract":"Recommender systems are often employed in different fields such as music, travel, and movies. The recommender systems are broadly utilised nowadays due to the emergence of social activities, in which particular recommendations are offered by group recommender systems. It is a system for recommending the items to a set of users together based on their preferences. The user preferences are used from the behavioural and social aspects of group members to enhance the quality of products recommended in various groups for generating the group recommendations. These group recommender systems solve the cold start problem, which is raised in an individual recommendation system. The ultimate aim of this paper is to design and develop a new Improved Deep Ensemble Learning Model (ID-ELM) for the group recommender systems concerning different application-oriented datasets. Initially, the datasets from different applications like healthcare, e-commerce, and e-learning are gathered from benchmark sources and split the data into various groups. These data are given to the pre-processing for making it fit for further processing. The pre-processing steps like stop word removal, stemming, and punctuation removal are performed here. Then the features are extracted using the Continuous Bag of Words Model (CBOW), and Principal Component Analysis (PCA) is used for dimension reduction. These features are fed to the ID-ELM, in which the optimised Convolutional Neural Network (CNN) extracts the significant features from the pooling layer, and the fully connected layer is replaced by a set of classifiers termed Neural Networks (NN), AdaBoost, and Logistic Regression (LR). Finally, the ranking of the ensemble learning model based on the group reviews extends the recommendation outcome. The optimised CNN is proposed by the Adaptive Seeking Range-based Cat Swarm Optimisation (ASR-CSO) for attaining better results. This model is validated on the benchmark datasets to show the efficiency of the designed model with different meta-heuristic-based algorithms and classification algorithms.","PeriodicalId":127309,"journal":{"name":"J. Inf. Knowl. Manag.","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"An Improved Cat Swarm Search-Based Deep Ensemble Learning Model for Group Recommender Systems\",\"authors\":\"Deepjyoti Roy, M. Dutta\",\"doi\":\"10.1142/s0219649222500320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recommender systems are often employed in different fields such as music, travel, and movies. The recommender systems are broadly utilised nowadays due to the emergence of social activities, in which particular recommendations are offered by group recommender systems. It is a system for recommending the items to a set of users together based on their preferences. The user preferences are used from the behavioural and social aspects of group members to enhance the quality of products recommended in various groups for generating the group recommendations. These group recommender systems solve the cold start problem, which is raised in an individual recommendation system. The ultimate aim of this paper is to design and develop a new Improved Deep Ensemble Learning Model (ID-ELM) for the group recommender systems concerning different application-oriented datasets. Initially, the datasets from different applications like healthcare, e-commerce, and e-learning are gathered from benchmark sources and split the data into various groups. These data are given to the pre-processing for making it fit for further processing. The pre-processing steps like stop word removal, stemming, and punctuation removal are performed here. Then the features are extracted using the Continuous Bag of Words Model (CBOW), and Principal Component Analysis (PCA) is used for dimension reduction. These features are fed to the ID-ELM, in which the optimised Convolutional Neural Network (CNN) extracts the significant features from the pooling layer, and the fully connected layer is replaced by a set of classifiers termed Neural Networks (NN), AdaBoost, and Logistic Regression (LR). Finally, the ranking of the ensemble learning model based on the group reviews extends the recommendation outcome. The optimised CNN is proposed by the Adaptive Seeking Range-based Cat Swarm Optimisation (ASR-CSO) for attaining better results. This model is validated on the benchmark datasets to show the efficiency of the designed model with different meta-heuristic-based algorithms and classification algorithms.\",\"PeriodicalId\":127309,\"journal\":{\"name\":\"J. Inf. Knowl. Manag.\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Inf. Knowl. Manag.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219649222500320\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Inf. Knowl. Manag.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219649222500320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

推荐系统通常用于不同的领域,如音乐、旅游和电影。由于社会活动的出现,推荐系统被广泛使用,其中特定的推荐是由群体推荐系统提供的。这是一个根据用户的偏好向一组用户推荐商品的系统。用户偏好是从群体成员的行为和社会方面来提高不同群体推荐产品的质量,从而产生群体推荐。这些群推荐系统解决了个体推荐系统中出现的冷启动问题。本文的最终目的是设计和开发一种新的改进深度集成学习模型(ID-ELM),用于涉及不同面向应用的数据集的组推荐系统。最初,从基准源收集来自不同应用程序(如医疗保健、电子商务和电子学习)的数据集,并将数据分成不同的组。这些数据被提供给预处理,使其适合进一步的处理。预处理步骤,如停止词删除、词干提取和标点符号删除在这里执行。然后使用连续词袋模型(CBOW)提取特征,并使用主成分分析(PCA)进行降维。这些特征被输入到ID-ELM中,其中优化的卷积神经网络(CNN)从池化层中提取重要特征,而完全连接层则被一组分类器(称为神经网络(NN)、AdaBoost和逻辑回归(LR))所取代。最后,基于小组评论的集成学习模型的排名扩展了推荐结果。优化后的CNN是由基于自适应寻距的Cat - Swarm optimization (ASR-CSO)提出的,以获得更好的效果。在基准数据集上对该模型进行了验证,通过不同的元启发式算法和分类算法验证了模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Improved Cat Swarm Search-Based Deep Ensemble Learning Model for Group Recommender Systems
Recommender systems are often employed in different fields such as music, travel, and movies. The recommender systems are broadly utilised nowadays due to the emergence of social activities, in which particular recommendations are offered by group recommender systems. It is a system for recommending the items to a set of users together based on their preferences. The user preferences are used from the behavioural and social aspects of group members to enhance the quality of products recommended in various groups for generating the group recommendations. These group recommender systems solve the cold start problem, which is raised in an individual recommendation system. The ultimate aim of this paper is to design and develop a new Improved Deep Ensemble Learning Model (ID-ELM) for the group recommender systems concerning different application-oriented datasets. Initially, the datasets from different applications like healthcare, e-commerce, and e-learning are gathered from benchmark sources and split the data into various groups. These data are given to the pre-processing for making it fit for further processing. The pre-processing steps like stop word removal, stemming, and punctuation removal are performed here. Then the features are extracted using the Continuous Bag of Words Model (CBOW), and Principal Component Analysis (PCA) is used for dimension reduction. These features are fed to the ID-ELM, in which the optimised Convolutional Neural Network (CNN) extracts the significant features from the pooling layer, and the fully connected layer is replaced by a set of classifiers termed Neural Networks (NN), AdaBoost, and Logistic Regression (LR). Finally, the ranking of the ensemble learning model based on the group reviews extends the recommendation outcome. The optimised CNN is proposed by the Adaptive Seeking Range-based Cat Swarm Optimisation (ASR-CSO) for attaining better results. This model is validated on the benchmark datasets to show the efficiency of the designed model with different meta-heuristic-based algorithms and classification algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Knowledge Management in Higher Education in Vietnam: Insights from Higher Education Leaders - An Exploratory Study The Organisation's Size-Innovation Performance Relationship: The Role of Human Resource Development Mechanisms A Comparative Review of Sentimental Analysis Using Machine Learning and Deep Learning Approaches Vocational Education Information Technology Based on Cross-Attention Fusion Knowledge Map Recommendation Algorithm Redesigning Knowledge Management Through Corporate Sustainability Strategy in the Post-Pandemic Era
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1