重水气相法制备硅表面及钝化

Andrea Edit Pap, P. Petrik, B. Pécz, G. Battistig, I. Bársony, Zsolt Szekrényes, K. Kamarás, Z. Schay, Z. Nényei
{"title":"重水气相法制备硅表面及钝化","authors":"Andrea Edit Pap, P. Petrik, B. Pécz, G. Battistig, I. Bársony, Zsolt Szekrényes, K. Kamarás, Z. Schay, Z. Nényei","doi":"10.1109/RTP.2008.4690558","DOIUrl":null,"url":null,"abstract":"In our previously published paper [1, 2] we demonstrated that deuterium adsorbs on Si surface at room temperature much stronger than hydrogen [3, 4]. Moreover, in case of deuterium passivated wafers the vacuum storage can be omitted without risking the non-controlled native oxidation of silicon for up to 5 hours or more. It could be a suitable and more robust surface cleaning and passivation process for the industry, but heavy water is expensive. As a cheaper procedure, we present in this paper the results of our studies in which the Si surface is treated in vapor phase of heavy-water (D2O) + 50% HF (e.g. 20:1) mixture at 25, 40, 50 and 65 °C, for 1, 10 and 60 minutes. The surface evolution of the D-passivated surface was followed by contact angle measurements, by spectroscopic ellipsometry (SE), by atomic force microscopy (AFM), by X-ray photoelectron spectroscopy (XPS), by transmission electron microscopy (TEM) and by infrared absorption spectroscopy (IR) qualification and the results were compared to the H-passivated Si surface. It turned out that 1 min vapor phase treatment at 65 °C was enough to remove the native oxide and to passivate the Si surface without any degradation of the atomic surface flatness. Combination of D (or H) passivation with rapid thermal process (RTP) based on the thermal desorption kinetics of the adsorbed D and/or H layers on Si is a promising method for improved interface engineering and for better initial reactions in case of ultra thin dielectric layer formations.","PeriodicalId":317927,"journal":{"name":"2008 16th IEEE International Conference on Advanced Thermal Processing of Semiconductors","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Si surface preparation and passivation by vapor phase of heavy water\",\"authors\":\"Andrea Edit Pap, P. Petrik, B. Pécz, G. Battistig, I. Bársony, Zsolt Szekrényes, K. Kamarás, Z. Schay, Z. Nényei\",\"doi\":\"10.1109/RTP.2008.4690558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In our previously published paper [1, 2] we demonstrated that deuterium adsorbs on Si surface at room temperature much stronger than hydrogen [3, 4]. Moreover, in case of deuterium passivated wafers the vacuum storage can be omitted without risking the non-controlled native oxidation of silicon for up to 5 hours or more. It could be a suitable and more robust surface cleaning and passivation process for the industry, but heavy water is expensive. As a cheaper procedure, we present in this paper the results of our studies in which the Si surface is treated in vapor phase of heavy-water (D2O) + 50% HF (e.g. 20:1) mixture at 25, 40, 50 and 65 °C, for 1, 10 and 60 minutes. The surface evolution of the D-passivated surface was followed by contact angle measurements, by spectroscopic ellipsometry (SE), by atomic force microscopy (AFM), by X-ray photoelectron spectroscopy (XPS), by transmission electron microscopy (TEM) and by infrared absorption spectroscopy (IR) qualification and the results were compared to the H-passivated Si surface. It turned out that 1 min vapor phase treatment at 65 °C was enough to remove the native oxide and to passivate the Si surface without any degradation of the atomic surface flatness. Combination of D (or H) passivation with rapid thermal process (RTP) based on the thermal desorption kinetics of the adsorbed D and/or H layers on Si is a promising method for improved interface engineering and for better initial reactions in case of ultra thin dielectric layer formations.\",\"PeriodicalId\":317927,\"journal\":{\"name\":\"2008 16th IEEE International Conference on Advanced Thermal Processing of Semiconductors\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 16th IEEE International Conference on Advanced Thermal Processing of Semiconductors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RTP.2008.4690558\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 16th IEEE International Conference on Advanced Thermal Processing of Semiconductors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTP.2008.4690558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在我们之前发表的论文[1,2]中,我们证明了室温下氘对硅表面的吸附比氢强得多[3,4]。此外,在氘钝化晶圆的情况下,可以省去真空储存,而不会冒着硅的非受控天然氧化长达5小时或更长时间的风险。对于工业来说,这可能是一种更合适、更强大的表面清洁和钝化工艺,但重水是昂贵的。作为一种更便宜的方法,我们在本文中介绍了我们的研究结果,其中Si表面在重水(D2O) + 50% HF(例如20:1)混合物的气相中在25、40、50和65°C下处理1,10和60分钟。采用接触角测量、椭偏光谱(SE)、原子力显微镜(AFM)、x射线光电子能谱(XPS)、透射电子显微镜(TEM)和红外吸收光谱(IR)等方法对d钝化表面进行了表面演化,并将结果与h钝化后的Si表面进行了比较。结果表明,65℃下1 min的气相处理足以去除天然氧化物并钝化Si表面,而不会降低原子表面的平整度。D(或H)钝化与基于吸附D和/或H层的热解吸动力学的快速热过程(RTP)相结合是一种有前途的方法,可以改善界面工程,并在超薄介电层形成的情况下获得更好的初始反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Si surface preparation and passivation by vapor phase of heavy water
In our previously published paper [1, 2] we demonstrated that deuterium adsorbs on Si surface at room temperature much stronger than hydrogen [3, 4]. Moreover, in case of deuterium passivated wafers the vacuum storage can be omitted without risking the non-controlled native oxidation of silicon for up to 5 hours or more. It could be a suitable and more robust surface cleaning and passivation process for the industry, but heavy water is expensive. As a cheaper procedure, we present in this paper the results of our studies in which the Si surface is treated in vapor phase of heavy-water (D2O) + 50% HF (e.g. 20:1) mixture at 25, 40, 50 and 65 °C, for 1, 10 and 60 minutes. The surface evolution of the D-passivated surface was followed by contact angle measurements, by spectroscopic ellipsometry (SE), by atomic force microscopy (AFM), by X-ray photoelectron spectroscopy (XPS), by transmission electron microscopy (TEM) and by infrared absorption spectroscopy (IR) qualification and the results were compared to the H-passivated Si surface. It turned out that 1 min vapor phase treatment at 65 °C was enough to remove the native oxide and to passivate the Si surface without any degradation of the atomic surface flatness. Combination of D (or H) passivation with rapid thermal process (RTP) based on the thermal desorption kinetics of the adsorbed D and/or H layers on Si is a promising method for improved interface engineering and for better initial reactions in case of ultra thin dielectric layer formations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect of wafer thickness on sheet resistance during spike annealing Enhancing tensile stress and source/drain activation with Si:C with innovations in ion implant and millisecond laser spike annealing High precision micro-scale Hall effect characterization method using in-line micro four-point probes Laser spike annealing and its application to leading-edge logic devices Laser annealing of double implanted layers for IGBT Power Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1