具有再生句子的大规模AMR语料库:ACL文集语料库的领域自适应预训练

Mingyi Zhao, Yaling Wang, Y. Lepage
{"title":"具有再生句子的大规模AMR语料库:ACL文集语料库的领域自适应预训练","authors":"Mingyi Zhao, Yaling Wang, Y. Lepage","doi":"10.1109/ICACSIS56558.2022.9923502","DOIUrl":null,"url":null,"abstract":"Abstract Meaning Representation (AMR) is a broad -coverage formalism for capturing the semantics of a given sentence. However, domain adaptation of AMR is limited by the shortage of annotated AMR graphs. In this paper, we explore and build a new large-scale dataset with 2.3 million AMRs in the domain of academic writing. Additionally, we prove that 30% of them are of similar quality as the annotated data in the downstream AMR-to-text task. Our results outperform previous graph-based approaches by over 11 BLEU points. We provide a pipeline that integrates automated generation and evaluation. This can help explore other AMR benchmarks.","PeriodicalId":165728,"journal":{"name":"2022 International Conference on Advanced Computer Science and Information Systems (ICACSIS)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large-scale AMR Corpus with Re-generated Sentences: Domain Adaptive Pre-training on ACL Anthology Corpus\",\"authors\":\"Mingyi Zhao, Yaling Wang, Y. Lepage\",\"doi\":\"10.1109/ICACSIS56558.2022.9923502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Meaning Representation (AMR) is a broad -coverage formalism for capturing the semantics of a given sentence. However, domain adaptation of AMR is limited by the shortage of annotated AMR graphs. In this paper, we explore and build a new large-scale dataset with 2.3 million AMRs in the domain of academic writing. Additionally, we prove that 30% of them are of similar quality as the annotated data in the downstream AMR-to-text task. Our results outperform previous graph-based approaches by over 11 BLEU points. We provide a pipeline that integrates automated generation and evaluation. This can help explore other AMR benchmarks.\",\"PeriodicalId\":165728,\"journal\":{\"name\":\"2022 International Conference on Advanced Computer Science and Information Systems (ICACSIS)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Advanced Computer Science and Information Systems (ICACSIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACSIS56558.2022.9923502\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Advanced Computer Science and Information Systems (ICACSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACSIS56558.2022.9923502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

抽象意义表示(AMR)是一种用于捕获给定句子语义的广泛形式体系。然而,由于缺乏带注释的AMR图,限制了AMR的领域自适应。在本文中,我们探索并构建了一个包含230万个学术写作领域amr的新大规模数据集。此外,我们证明其中30%的数据与下游AMR-to-text任务中标注的数据质量相似。我们的结果比以前基于图形的方法高出11个BLEU点。我们提供了一个集成自动生成和评估的管道。这有助于探索其他AMR基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Large-scale AMR Corpus with Re-generated Sentences: Domain Adaptive Pre-training on ACL Anthology Corpus
Abstract Meaning Representation (AMR) is a broad -coverage formalism for capturing the semantics of a given sentence. However, domain adaptation of AMR is limited by the shortage of annotated AMR graphs. In this paper, we explore and build a new large-scale dataset with 2.3 million AMRs in the domain of academic writing. Additionally, we prove that 30% of them are of similar quality as the annotated data in the downstream AMR-to-text task. Our results outperform previous graph-based approaches by over 11 BLEU points. We provide a pipeline that integrates automated generation and evaluation. This can help explore other AMR benchmarks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Determining An Optimal Airport Location For Country Capital Case Study: Capital Region Nusantara Clustered Bert Model for predicting Retweet Popularity Placement Analysis ofGCI Radar For Supporting Indonesia Air Defense Using Geographic Information System (Case Study: West Kalimantan) Improved Single Shot Detector with Enhanced Hard Negative Mining Approach Classification of Stroke and Non-Stroke Patients from Human Body Movements using Smartphone Videos and Deep Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1