{"title":"具有再生句子的大规模AMR语料库:ACL文集语料库的领域自适应预训练","authors":"Mingyi Zhao, Yaling Wang, Y. Lepage","doi":"10.1109/ICACSIS56558.2022.9923502","DOIUrl":null,"url":null,"abstract":"Abstract Meaning Representation (AMR) is a broad -coverage formalism for capturing the semantics of a given sentence. However, domain adaptation of AMR is limited by the shortage of annotated AMR graphs. In this paper, we explore and build a new large-scale dataset with 2.3 million AMRs in the domain of academic writing. Additionally, we prove that 30% of them are of similar quality as the annotated data in the downstream AMR-to-text task. Our results outperform previous graph-based approaches by over 11 BLEU points. We provide a pipeline that integrates automated generation and evaluation. This can help explore other AMR benchmarks.","PeriodicalId":165728,"journal":{"name":"2022 International Conference on Advanced Computer Science and Information Systems (ICACSIS)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large-scale AMR Corpus with Re-generated Sentences: Domain Adaptive Pre-training on ACL Anthology Corpus\",\"authors\":\"Mingyi Zhao, Yaling Wang, Y. Lepage\",\"doi\":\"10.1109/ICACSIS56558.2022.9923502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Meaning Representation (AMR) is a broad -coverage formalism for capturing the semantics of a given sentence. However, domain adaptation of AMR is limited by the shortage of annotated AMR graphs. In this paper, we explore and build a new large-scale dataset with 2.3 million AMRs in the domain of academic writing. Additionally, we prove that 30% of them are of similar quality as the annotated data in the downstream AMR-to-text task. Our results outperform previous graph-based approaches by over 11 BLEU points. We provide a pipeline that integrates automated generation and evaluation. This can help explore other AMR benchmarks.\",\"PeriodicalId\":165728,\"journal\":{\"name\":\"2022 International Conference on Advanced Computer Science and Information Systems (ICACSIS)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Advanced Computer Science and Information Systems (ICACSIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACSIS56558.2022.9923502\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Advanced Computer Science and Information Systems (ICACSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACSIS56558.2022.9923502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Large-scale AMR Corpus with Re-generated Sentences: Domain Adaptive Pre-training on ACL Anthology Corpus
Abstract Meaning Representation (AMR) is a broad -coverage formalism for capturing the semantics of a given sentence. However, domain adaptation of AMR is limited by the shortage of annotated AMR graphs. In this paper, we explore and build a new large-scale dataset with 2.3 million AMRs in the domain of academic writing. Additionally, we prove that 30% of them are of similar quality as the annotated data in the downstream AMR-to-text task. Our results outperform previous graph-based approaches by over 11 BLEU points. We provide a pipeline that integrates automated generation and evaluation. This can help explore other AMR benchmarks.