{"title":"ABLE:美学盒饭编辑","authors":"Yutong Zhou, N. Shimada","doi":"10.1145/3552485.3554935","DOIUrl":null,"url":null,"abstract":"This paper proposes an exploratory research that contains a pre-trained ordering recovery model to obtain correct placement sequences from box lunch images, and a generative adversarial network to composite novel box lunch presentations from single item food and generated layouts. Furthermore, we present Bento800, the first cleanly annotated, high-quality, and standardized dataset for aesthetic box lunch presentation generation and other downstream tasks. Bento800 dataset is available at \\urlhttps://github.com/Yutong-Zhou-cv/Bento800_Dataset.","PeriodicalId":338126,"journal":{"name":"Proceedings of the 1st International Workshop on Multimedia for Cooking, Eating, and related APPlications","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"ABLE: Aesthetic Box Lunch Editing\",\"authors\":\"Yutong Zhou, N. Shimada\",\"doi\":\"10.1145/3552485.3554935\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an exploratory research that contains a pre-trained ordering recovery model to obtain correct placement sequences from box lunch images, and a generative adversarial network to composite novel box lunch presentations from single item food and generated layouts. Furthermore, we present Bento800, the first cleanly annotated, high-quality, and standardized dataset for aesthetic box lunch presentation generation and other downstream tasks. Bento800 dataset is available at \\\\urlhttps://github.com/Yutong-Zhou-cv/Bento800_Dataset.\",\"PeriodicalId\":338126,\"journal\":{\"name\":\"Proceedings of the 1st International Workshop on Multimedia for Cooking, Eating, and related APPlications\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1st International Workshop on Multimedia for Cooking, Eating, and related APPlications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3552485.3554935\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st International Workshop on Multimedia for Cooking, Eating, and related APPlications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3552485.3554935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一项探索性研究,该研究包含一个预训练的排序恢复模型,用于从盒饭图像中获得正确的放置序列,以及一个生成对抗网络,用于从单个食物和生成布局中合成新颖的盒饭呈现。此外,我们提出了Bento800,这是第一个用于美学盒饭表示生成和其他下游任务的清晰注释、高质量和标准化数据集。Bento800数据集可在\urlhttps://github.com/Yutong-Zhou-cv/Bento800_Dataset获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ABLE: Aesthetic Box Lunch Editing
This paper proposes an exploratory research that contains a pre-trained ordering recovery model to obtain correct placement sequences from box lunch images, and a generative adversarial network to composite novel box lunch presentations from single item food and generated layouts. Furthermore, we present Bento800, the first cleanly annotated, high-quality, and standardized dataset for aesthetic box lunch presentation generation and other downstream tasks. Bento800 dataset is available at \urlhttps://github.com/Yutong-Zhou-cv/Bento800_Dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multimodal Dish Pairing: Predicting Side Dishes to Serve with a Main Dish Prediction of Mental State from Food Images Learning Sequential Transformation Information of Ingredients for Fine-Grained Cooking Activity Recognition Recipe Recording by Duplicating and Editing Standard Recipe Recipe Recommendation for Balancing Ingredient Preference and Daily Nutrients
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1