使用内容完整性验证识别Web应用程序中的恶意软件欺诈检测

Sontela Kuruba Dinesh, C. Govardhan
{"title":"使用内容完整性验证识别Web应用程序中的恶意软件欺诈检测","authors":"Sontela Kuruba Dinesh, C. Govardhan","doi":"10.23883/ijrter.2019.5079.zjrff","DOIUrl":null,"url":null,"abstract":"Fraudulent behaviors in Google Play,the most popular Android app market,fuel search rank abuse and malware proliferation. To identify malware, previous work has focused on app executable and permission analysis.In this paper,we introduce Fair Play,anovel system that discovers and leverages traces left behind by fraudsters, to detect both malware and apps subjected to search rank fraud. Fair Play correlate sreview activities and uniquely combines detected review relations with linguisticand behavioral signals gleaned from GooglePlay appdata(87Kapps,2.9Mreviews,and2.4Mreviewers, collected over half a year),in order to identify suspicious apps. Fair Play achieves over 95% accuracy in classifying gold standard datasets of malware, fraudulent and legitimate apps. We show that 75% of the identified malware apps engagein searchrankfraud.Fair Play discovers hundreds off raudulent apps that currently evadeGoogleBouncer’s detection technology. FairPlay also helped the discovery of more than 1,000 reviews,reported for 193 apps that reveala new type of“ coercive” review campaign: users areharassed into writing positive reviews,and install and review other apps. Indexterms:Android market, search rank fraud, malwaredetection","PeriodicalId":143099,"journal":{"name":"INTERNATIONAL JOURNAL OF RECENT TRENDS IN ENGINEERING & RESEARCH","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identifying Malware Fraud Detection in Web Application using Content Integrity Verification\",\"authors\":\"Sontela Kuruba Dinesh, C. Govardhan\",\"doi\":\"10.23883/ijrter.2019.5079.zjrff\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fraudulent behaviors in Google Play,the most popular Android app market,fuel search rank abuse and malware proliferation. To identify malware, previous work has focused on app executable and permission analysis.In this paper,we introduce Fair Play,anovel system that discovers and leverages traces left behind by fraudsters, to detect both malware and apps subjected to search rank fraud. Fair Play correlate sreview activities and uniquely combines detected review relations with linguisticand behavioral signals gleaned from GooglePlay appdata(87Kapps,2.9Mreviews,and2.4Mreviewers, collected over half a year),in order to identify suspicious apps. Fair Play achieves over 95% accuracy in classifying gold standard datasets of malware, fraudulent and legitimate apps. We show that 75% of the identified malware apps engagein searchrankfraud.Fair Play discovers hundreds off raudulent apps that currently evadeGoogleBouncer’s detection technology. FairPlay also helped the discovery of more than 1,000 reviews,reported for 193 apps that reveala new type of“ coercive” review campaign: users areharassed into writing positive reviews,and install and review other apps. Indexterms:Android market, search rank fraud, malwaredetection\",\"PeriodicalId\":143099,\"journal\":{\"name\":\"INTERNATIONAL JOURNAL OF RECENT TRENDS IN ENGINEERING & RESEARCH\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"INTERNATIONAL JOURNAL OF RECENT TRENDS IN ENGINEERING & RESEARCH\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23883/ijrter.2019.5079.zjrff\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"INTERNATIONAL JOURNAL OF RECENT TRENDS IN ENGINEERING & RESEARCH","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23883/ijrter.2019.5079.zjrff","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最受欢迎的Android应用市场Google Play中的欺诈行为助长了搜索排名滥用和恶意软件的扩散。为了识别恶意软件,之前的工作主要集中在应用程序可执行文件和权限分析上。在本文中,我们介绍了Fair Play,一种新的系统,可以发现并利用欺诈者留下的痕迹,来检测恶意软件和遭受搜索排名欺诈的应用程序。公平竞争与评论活动相关,并将检测到的评论关系与从GooglePlay应用数据中收集的语言和行为信号相结合(87Kapps,2.9 m评论和2.4 m评论,收集时间超过半年),以识别可疑应用。Fair Play在分类恶意软件、欺诈和合法应用程序的黄金标准数据集方面实现了95%以上的准确率。我们发现,75%的被识别的恶意软件应用程序参与了搜索排名欺诈。Fair Play发现了数百个目前躲过googlebouncer检测技术的恶意应用程序。据报道,FairPlay还帮助发现了超过1000条评论,其中193个应用显示了一种新型的“强制”评论活动:用户被骚扰,写下积极的评论,并安装和评论其他应用。Indexterms:Android市场,搜索排名欺诈,恶意软件检测
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identifying Malware Fraud Detection in Web Application using Content Integrity Verification
Fraudulent behaviors in Google Play,the most popular Android app market,fuel search rank abuse and malware proliferation. To identify malware, previous work has focused on app executable and permission analysis.In this paper,we introduce Fair Play,anovel system that discovers and leverages traces left behind by fraudsters, to detect both malware and apps subjected to search rank fraud. Fair Play correlate sreview activities and uniquely combines detected review relations with linguisticand behavioral signals gleaned from GooglePlay appdata(87Kapps,2.9Mreviews,and2.4Mreviewers, collected over half a year),in order to identify suspicious apps. Fair Play achieves over 95% accuracy in classifying gold standard datasets of malware, fraudulent and legitimate apps. We show that 75% of the identified malware apps engagein searchrankfraud.Fair Play discovers hundreds off raudulent apps that currently evadeGoogleBouncer’s detection technology. FairPlay also helped the discovery of more than 1,000 reviews,reported for 193 apps that reveala new type of“ coercive” review campaign: users areharassed into writing positive reviews,and install and review other apps. Indexterms:Android market, search rank fraud, malwaredetection
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transducers Effect of powder mixed dielectric on Surface properties in Electric Discharge Machining PERFORMANCE EVALUATION OF SINGLE PHASE LPG BASED GENERATOR SET USED FOR ELECTRICITY GENERATION REQUIRED FOR DOMESTIC APPLICATION IMPLEMENTATION of DSL for WEB SCRAPING RECOMMENDATION OF SENSOR BASED SMART DUSTBINS USING IOT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1