基于Bloom滤波的虹膜生物特征数据索引研究

C. Rathgeb, Harald Baier, C. Busch, Frank Breitinger
{"title":"基于Bloom滤波的虹膜生物特征数据索引研究","authors":"C. Rathgeb, Harald Baier, C. Busch, Frank Breitinger","doi":"10.1109/ICB.2015.7139105","DOIUrl":null,"url":null,"abstract":"Conventional biometric identification systems require exhaustive 1 : N comparisons in order to identify biometric probes, i.e. comparison time frequently dominates the overall computational workload. Biometric database indexing represents a challenging task since biometric data is fuzzy and does not exhibit any natural sorting order. In this paper we present a preliminary study on the feasibility of applying Bloom filters for the purpose of iris biometric database indexing. It is shown, that by constructing a binary tree data structure of Bloom filters extracted from binary iris biometric templates (iris-codes) the search space can be reduced to O(logN). In experiments, which are carried out on a database of N = 256 classes, biometric performance (accuracy) is maintained for different conventional identification systems. Further, perspectives on how to employ the proposed scheme on large-scale databases are given.","PeriodicalId":237372,"journal":{"name":"2015 International Conference on Biometrics (ICB)","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":"{\"title\":\"Towards Bloom filter-based indexing of iris biometric data\",\"authors\":\"C. Rathgeb, Harald Baier, C. Busch, Frank Breitinger\",\"doi\":\"10.1109/ICB.2015.7139105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conventional biometric identification systems require exhaustive 1 : N comparisons in order to identify biometric probes, i.e. comparison time frequently dominates the overall computational workload. Biometric database indexing represents a challenging task since biometric data is fuzzy and does not exhibit any natural sorting order. In this paper we present a preliminary study on the feasibility of applying Bloom filters for the purpose of iris biometric database indexing. It is shown, that by constructing a binary tree data structure of Bloom filters extracted from binary iris biometric templates (iris-codes) the search space can be reduced to O(logN). In experiments, which are carried out on a database of N = 256 classes, biometric performance (accuracy) is maintained for different conventional identification systems. Further, perspectives on how to employ the proposed scheme on large-scale databases are given.\",\"PeriodicalId\":237372,\"journal\":{\"name\":\"2015 International Conference on Biometrics (ICB)\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"49\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Biometrics (ICB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICB.2015.7139105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Biometrics (ICB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICB.2015.7139105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

摘要

传统的生物特征识别系统需要详尽的1:N比较来识别生物特征探针,即比较时间经常占总计算工作量的主导地位。生物特征数据库索引是一项具有挑战性的任务,因为生物特征数据是模糊的,并且没有表现出任何自然的排序顺序。本文对应用布隆滤波器进行虹膜生物特征数据库索引的可行性进行了初步研究。研究表明,通过构建从二进制虹膜生物特征模板(虹膜编码)中提取的Bloom滤波器的二叉树数据结构,可以将搜索空间缩减到O(logN)。在一个N = 256类的数据库上进行的实验中,不同的传统识别系统保持了生物识别性能(准确性)。此外,本文还对如何在大型数据库中应用所提出的方案进行了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards Bloom filter-based indexing of iris biometric data
Conventional biometric identification systems require exhaustive 1 : N comparisons in order to identify biometric probes, i.e. comparison time frequently dominates the overall computational workload. Biometric database indexing represents a challenging task since biometric data is fuzzy and does not exhibit any natural sorting order. In this paper we present a preliminary study on the feasibility of applying Bloom filters for the purpose of iris biometric database indexing. It is shown, that by constructing a binary tree data structure of Bloom filters extracted from binary iris biometric templates (iris-codes) the search space can be reduced to O(logN). In experiments, which are carried out on a database of N = 256 classes, biometric performance (accuracy) is maintained for different conventional identification systems. Further, perspectives on how to employ the proposed scheme on large-scale databases are given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast and robust self-training beard/moustache detection and segmentation Composite sketch recognition via deep network - a transfer learning approach Cross-sensor iris verification applying robust fused segmentation algorithms Multi-modal authentication system for smartphones using face, iris and periocular An efficient approach for clustering face images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1