带安全约束的大数据规模最优潮流分布并行算法

Lanchao Liu, A. Khodaei, W. Yin, Zhu Han
{"title":"带安全约束的大数据规模最优潮流分布并行算法","authors":"Lanchao Liu, A. Khodaei, W. Yin, Zhu Han","doi":"10.1109/SmartGridComm.2013.6688053","DOIUrl":null,"url":null,"abstract":"This paper presents a mathematical optimization framework for security-constrained optimal power flow (SCOPF) computations. The SCOPF problem determines the optimal control of power systems under constraints arising from a set of postulated contingencies. This problem is challenging due to the significantly large problem size, the stringent real-time requirement and the variety of numerous post-contingency states. In order to solve the resultant big data scale optimization problem with manageable complexity, the alternating direction method of multipliers (ADMM) is utilized. The SCOPF is decomposed into independent subproblems correspond to each individual pre-contingency and post-contingency case. Those subproblems are solved in parallel on distributed nodes and coordinated through dual (prices) variables. As a result, the algorithm is implemented in a distributive and parallel fashion. Numerical tests validate the effectiveness of the proposed algorithm.","PeriodicalId":136434,"journal":{"name":"2013 IEEE International Conference on Smart Grid Communications (SmartGridComm)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"A distribute parallel approach for big data scale optimal power flow with security constraints\",\"authors\":\"Lanchao Liu, A. Khodaei, W. Yin, Zhu Han\",\"doi\":\"10.1109/SmartGridComm.2013.6688053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a mathematical optimization framework for security-constrained optimal power flow (SCOPF) computations. The SCOPF problem determines the optimal control of power systems under constraints arising from a set of postulated contingencies. This problem is challenging due to the significantly large problem size, the stringent real-time requirement and the variety of numerous post-contingency states. In order to solve the resultant big data scale optimization problem with manageable complexity, the alternating direction method of multipliers (ADMM) is utilized. The SCOPF is decomposed into independent subproblems correspond to each individual pre-contingency and post-contingency case. Those subproblems are solved in parallel on distributed nodes and coordinated through dual (prices) variables. As a result, the algorithm is implemented in a distributive and parallel fashion. Numerical tests validate the effectiveness of the proposed algorithm.\",\"PeriodicalId\":136434,\"journal\":{\"name\":\"2013 IEEE International Conference on Smart Grid Communications (SmartGridComm)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Smart Grid Communications (SmartGridComm)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SmartGridComm.2013.6688053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Smart Grid Communications (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm.2013.6688053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

本文提出了安全约束最优潮流(SCOPF)计算的数学优化框架。SCOPF问题确定了在一组假定的偶然性约束下电力系统的最优控制。由于问题规模非常大,对实时性的要求非常严格,并且事故发生后的状态多种多样,因此该问题具有挑战性。为了解决由此产生的复杂性可控的大数据规模优化问题,采用了乘法器交替方向法(ADMM)。将SCOPF分解为独立的子问题,分别对应于每个偶然性前和偶然性后的情况。这些子问题在分布式节点上并行解决,并通过对偶(价格)变量进行协调。因此,该算法以分布式和并行的方式实现。数值实验验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A distribute parallel approach for big data scale optimal power flow with security constraints
This paper presents a mathematical optimization framework for security-constrained optimal power flow (SCOPF) computations. The SCOPF problem determines the optimal control of power systems under constraints arising from a set of postulated contingencies. This problem is challenging due to the significantly large problem size, the stringent real-time requirement and the variety of numerous post-contingency states. In order to solve the resultant big data scale optimization problem with manageable complexity, the alternating direction method of multipliers (ADMM) is utilized. The SCOPF is decomposed into independent subproblems correspond to each individual pre-contingency and post-contingency case. Those subproblems are solved in parallel on distributed nodes and coordinated through dual (prices) variables. As a result, the algorithm is implemented in a distributive and parallel fashion. Numerical tests validate the effectiveness of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On measurement unit placement for smart electrical grid fault localization Delay makes a difference: Smart grid resilience under remote meter disconnect attack Online energy management strategies for base stations powered by the smart grid On phasor measurement unit placement against state and topology attacks The development of a smart grid co-simulation platform and case study on Vehicle-to-Grid voltage support application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1