利用ELECTRA建立新加坡式英语神经语言模型

Galangkangin Gotera, Radityo Eko Prasojo, Y. K. Isal
{"title":"利用ELECTRA建立新加坡式英语神经语言模型","authors":"Galangkangin Gotera, Radityo Eko Prasojo, Y. K. Isal","doi":"10.1109/ICACSIS56558.2022.9923521","DOIUrl":null,"url":null,"abstract":"We develop and benchmark a Singlish pretrained neural language model. To this end, we build a novel 3 GB Singlish freetext dataset collected through various Singaporean websites. Then, we leverage ELECTRA (Efficiently Learning an Encoder that Classifies Token Replacements Accurately) to train a transformer-based Singlish language model. ELECTRA is chosen due to its resource-efficiency to better ensure reproducibility. We further build two text classification datasets in Singlish: sentiment analysis and language identification. We use the two datasets to fine-tune our ELECTRA model and benchmark the results against other available pretrained models in English and Singlish. Our experiments show that our Singlish ELECTRA model is competitive against the best open-source models we found despite being pretrained within a significantly less amount of time. We publicly release the benchmarking dataset.","PeriodicalId":165728,"journal":{"name":"2022 International Conference on Advanced Computer Science and Information Systems (ICACSIS)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Developing a Singlish Neural Language Model using ELECTRA\",\"authors\":\"Galangkangin Gotera, Radityo Eko Prasojo, Y. K. Isal\",\"doi\":\"10.1109/ICACSIS56558.2022.9923521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop and benchmark a Singlish pretrained neural language model. To this end, we build a novel 3 GB Singlish freetext dataset collected through various Singaporean websites. Then, we leverage ELECTRA (Efficiently Learning an Encoder that Classifies Token Replacements Accurately) to train a transformer-based Singlish language model. ELECTRA is chosen due to its resource-efficiency to better ensure reproducibility. We further build two text classification datasets in Singlish: sentiment analysis and language identification. We use the two datasets to fine-tune our ELECTRA model and benchmark the results against other available pretrained models in English and Singlish. Our experiments show that our Singlish ELECTRA model is competitive against the best open-source models we found despite being pretrained within a significantly less amount of time. We publicly release the benchmarking dataset.\",\"PeriodicalId\":165728,\"journal\":{\"name\":\"2022 International Conference on Advanced Computer Science and Information Systems (ICACSIS)\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Advanced Computer Science and Information Systems (ICACSIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACSIS56558.2022.9923521\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Advanced Computer Science and Information Systems (ICACSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACSIS56558.2022.9923521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们开发并测试了一个新加坡英语预训练的神经语言模型。为此,我们建立了一个新颖的3gb的新加坡英语免费文本数据集,这些数据集是通过各种新加坡网站收集的。然后,我们利用ELECTRA(高效学习编码器,准确分类Token替换)来训练基于转换器的新加坡英语语言模型。选择ELECTRA是因为其资源效率高,可以更好地确保再现性。我们进一步建立了新加坡英语的两个文本分类数据集:情感分析和语言识别。我们使用这两个数据集来微调我们的ELECTRA模型,并将结果与其他可用的英语和新加坡英语预训练模型进行基准测试。我们的实验表明,我们的Singlish ELECTRA模型与我们发现的最好的开源模型相比具有竞争力,尽管我们在更少的时间内进行了预训练。我们公开发布基准测试数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Developing a Singlish Neural Language Model using ELECTRA
We develop and benchmark a Singlish pretrained neural language model. To this end, we build a novel 3 GB Singlish freetext dataset collected through various Singaporean websites. Then, we leverage ELECTRA (Efficiently Learning an Encoder that Classifies Token Replacements Accurately) to train a transformer-based Singlish language model. ELECTRA is chosen due to its resource-efficiency to better ensure reproducibility. We further build two text classification datasets in Singlish: sentiment analysis and language identification. We use the two datasets to fine-tune our ELECTRA model and benchmark the results against other available pretrained models in English and Singlish. Our experiments show that our Singlish ELECTRA model is competitive against the best open-source models we found despite being pretrained within a significantly less amount of time. We publicly release the benchmarking dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Determining An Optimal Airport Location For Country Capital Case Study: Capital Region Nusantara Clustered Bert Model for predicting Retweet Popularity Placement Analysis ofGCI Radar For Supporting Indonesia Air Defense Using Geographic Information System (Case Study: West Kalimantan) Improved Single Shot Detector with Enhanced Hard Negative Mining Approach Classification of Stroke and Non-Stroke Patients from Human Body Movements using Smartphone Videos and Deep Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1