视网膜图像中不确定性感知的动脉/静脉分类

A. Galdran, Maria Inês Meyer, P. Costa, A. Mendonça, A. Campilho
{"title":"视网膜图像中不确定性感知的动脉/静脉分类","authors":"A. Galdran, Maria Inês Meyer, P. Costa, A. Mendonça, A. Campilho","doi":"10.1109/ISBI.2019.8759380","DOIUrl":null,"url":null,"abstract":"The automatic differentiation of retinal vessels into arteries and veins (A/V) is a highly relevant task within the field of retinal image analysis. However, due to limitations of retinal image acquisition devices, specialists can find it impossible to label certain vessels in eye fundus images. In this paper, we introduce a method that takes into account such uncertainty by design. For this, we formulate the A/V classification task as a four-class segmentation problem, and a Convolutional Neural Network is trained to classify pixels into background, A/V, or uncertain classes. The resulting technique can directly provide pixelwise uncertainty estimates. In addition, instead of depending on a previously available vessel segmentation, the method automatically segments the vessel tree. Experimental results show a performance comparable or superior to several recent A/V classification approaches. In addition, the proposed technique also attains state-of-the-art performance when evaluated for the task of vessel segmentation, generalizing to data that was not used during training, even with considerable differences in terms of appearance and resolution.","PeriodicalId":119935,"journal":{"name":"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"Uncertainty-Aware Artery/Vein Classification on Retinal Images\",\"authors\":\"A. Galdran, Maria Inês Meyer, P. Costa, A. Mendonça, A. Campilho\",\"doi\":\"10.1109/ISBI.2019.8759380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The automatic differentiation of retinal vessels into arteries and veins (A/V) is a highly relevant task within the field of retinal image analysis. However, due to limitations of retinal image acquisition devices, specialists can find it impossible to label certain vessels in eye fundus images. In this paper, we introduce a method that takes into account such uncertainty by design. For this, we formulate the A/V classification task as a four-class segmentation problem, and a Convolutional Neural Network is trained to classify pixels into background, A/V, or uncertain classes. The resulting technique can directly provide pixelwise uncertainty estimates. In addition, instead of depending on a previously available vessel segmentation, the method automatically segments the vessel tree. Experimental results show a performance comparable or superior to several recent A/V classification approaches. In addition, the proposed technique also attains state-of-the-art performance when evaluated for the task of vessel segmentation, generalizing to data that was not used during training, even with considerable differences in terms of appearance and resolution.\",\"PeriodicalId\":119935,\"journal\":{\"name\":\"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2019.8759380\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2019.8759380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

摘要

视网膜血管自动分化为动脉和静脉(A/V)是视网膜图像分析领域中一个高度相关的课题。然而,由于视网膜图像采集设备的限制,专家们发现不可能在眼底图像中标记某些血管。在本文中,我们介绍了一种在设计中考虑这种不确定性的方法。为此,我们将A/V分类任务制定为四类分割问题,并训练卷积神经网络将像素分类为背景,A/V或不确定类别。由此产生的技术可以直接提供像素级的不确定性估计。此外,该方法不依赖于先前可用的血管分割,而是自动分割血管树。实验结果表明,该方法的性能与最近几种a /V分类方法相当或更好。此外,在评估血管分割任务时,所提出的技术也达到了最先进的性能,可以推广到训练期间未使用的数据,即使在外观和分辨率方面存在很大差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Uncertainty-Aware Artery/Vein Classification on Retinal Images
The automatic differentiation of retinal vessels into arteries and veins (A/V) is a highly relevant task within the field of retinal image analysis. However, due to limitations of retinal image acquisition devices, specialists can find it impossible to label certain vessels in eye fundus images. In this paper, we introduce a method that takes into account such uncertainty by design. For this, we formulate the A/V classification task as a four-class segmentation problem, and a Convolutional Neural Network is trained to classify pixels into background, A/V, or uncertain classes. The resulting technique can directly provide pixelwise uncertainty estimates. In addition, instead of depending on a previously available vessel segmentation, the method automatically segments the vessel tree. Experimental results show a performance comparable or superior to several recent A/V classification approaches. In addition, the proposed technique also attains state-of-the-art performance when evaluated for the task of vessel segmentation, generalizing to data that was not used during training, even with considerable differences in terms of appearance and resolution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Regularisation With a Dictionary of Lines for Medical Ultrasound Image Deconvolution On Multifractal Tissue Characterization in Ultrasound Imaging A Deep Learning Approach To Identify MRNA Localization Patterns Deforming Tessellations For The Segmentation Of Cell Aggregates Multi-Shell Diffusion MRI Measures of Brain Aging: A Preliminary Comparison From ADNI3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1