J. Neuwirth, F. Basso Basset, M. Rota, E. Roccia, C. Schimpf, K. Jöns, A. Rastelli, R. Trotta
{"title":"量子中继器的量子点技术:从纠缠光子产生到与量子存储器集成","authors":"J. Neuwirth, F. Basso Basset, M. Rota, E. Roccia, C. Schimpf, K. Jöns, A. Rastelli, R. Trotta","doi":"10.1088/2633-4356/ac3d14","DOIUrl":null,"url":null,"abstract":"\n The realization of a functional quantum repeater is one of the major research goals in long-distance quantum communication. Among the different approaches that are being followed, the one relying on quantum memories interfaced with deterministic quantum emitters is considered as one of the most promising solutions. In this work, we focus on the hardware to implement memory-based quantum-repeater schemes that rely on semiconductor quantum dots for the generation of polarization entangled photons. Going through the most relevant figures of merit related to efficiency of the photon source, we select significant developments in fabrication, processing and tuning techniques aimed at combining high degree of entanglement with on-demand pair generation, with a special focus on the progress achieved in the representative case of the GaAs system. We proceed to offer a perspective on integration with quantum memories, both highlighting preliminary works on natural-artificial atomic interfaces and commenting a wide choice of currently available and potentially viable memory solutions in terms of wavelength, bandwidth and noise-requirements. To complete the overview, we also present recent implementations of entanglement-based quantum communication protocols with quantum dots and highlight the next challenges ahead for the implementation of practical quantum networks.","PeriodicalId":345750,"journal":{"name":"Materials for Quantum Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Quantum dot technology for quantum repeaters: from entangled photon generation towards the integration with quantum memories\",\"authors\":\"J. Neuwirth, F. Basso Basset, M. Rota, E. Roccia, C. Schimpf, K. Jöns, A. Rastelli, R. Trotta\",\"doi\":\"10.1088/2633-4356/ac3d14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The realization of a functional quantum repeater is one of the major research goals in long-distance quantum communication. Among the different approaches that are being followed, the one relying on quantum memories interfaced with deterministic quantum emitters is considered as one of the most promising solutions. In this work, we focus on the hardware to implement memory-based quantum-repeater schemes that rely on semiconductor quantum dots for the generation of polarization entangled photons. Going through the most relevant figures of merit related to efficiency of the photon source, we select significant developments in fabrication, processing and tuning techniques aimed at combining high degree of entanglement with on-demand pair generation, with a special focus on the progress achieved in the representative case of the GaAs system. We proceed to offer a perspective on integration with quantum memories, both highlighting preliminary works on natural-artificial atomic interfaces and commenting a wide choice of currently available and potentially viable memory solutions in terms of wavelength, bandwidth and noise-requirements. To complete the overview, we also present recent implementations of entanglement-based quantum communication protocols with quantum dots and highlight the next challenges ahead for the implementation of practical quantum networks.\",\"PeriodicalId\":345750,\"journal\":{\"name\":\"Materials for Quantum Technology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials for Quantum Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2633-4356/ac3d14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials for Quantum Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2633-4356/ac3d14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Quantum dot technology for quantum repeaters: from entangled photon generation towards the integration with quantum memories
The realization of a functional quantum repeater is one of the major research goals in long-distance quantum communication. Among the different approaches that are being followed, the one relying on quantum memories interfaced with deterministic quantum emitters is considered as one of the most promising solutions. In this work, we focus on the hardware to implement memory-based quantum-repeater schemes that rely on semiconductor quantum dots for the generation of polarization entangled photons. Going through the most relevant figures of merit related to efficiency of the photon source, we select significant developments in fabrication, processing and tuning techniques aimed at combining high degree of entanglement with on-demand pair generation, with a special focus on the progress achieved in the representative case of the GaAs system. We proceed to offer a perspective on integration with quantum memories, both highlighting preliminary works on natural-artificial atomic interfaces and commenting a wide choice of currently available and potentially viable memory solutions in terms of wavelength, bandwidth and noise-requirements. To complete the overview, we also present recent implementations of entanglement-based quantum communication protocols with quantum dots and highlight the next challenges ahead for the implementation of practical quantum networks.