{"title":"第十二章。锂离子电池安全","authors":"W. Walker, Omar A. Ali, Dwight H. Theriot","doi":"10.1039/9781788016124-00290","DOIUrl":null,"url":null,"abstract":"Lithium-ion (Li-ion) batteries dominate the global energy storage market. Unfortunately, safety concerns for the utilization and transportation of these advanced energy storage devices exist due to the inherent possibility of thermal runaway. This chapter provides a detailed description of what Li-ion battery thermal runaway is and how it is characterized. Discussion is given on several high visibility field failure incidents. An introduction is provided on the modeling methods and primary testing techniques used to characterize thermal runaway. Last, a brief discussion is given on future trends and expectations associated with Li-ion battery safety.","PeriodicalId":366270,"journal":{"name":"Future Lithium-ion Batteries","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CHAPTER 12. Lithium-ion Battery Safety\",\"authors\":\"W. Walker, Omar A. Ali, Dwight H. Theriot\",\"doi\":\"10.1039/9781788016124-00290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lithium-ion (Li-ion) batteries dominate the global energy storage market. Unfortunately, safety concerns for the utilization and transportation of these advanced energy storage devices exist due to the inherent possibility of thermal runaway. This chapter provides a detailed description of what Li-ion battery thermal runaway is and how it is characterized. Discussion is given on several high visibility field failure incidents. An introduction is provided on the modeling methods and primary testing techniques used to characterize thermal runaway. Last, a brief discussion is given on future trends and expectations associated with Li-ion battery safety.\",\"PeriodicalId\":366270,\"journal\":{\"name\":\"Future Lithium-ion Batteries\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Lithium-ion Batteries\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1039/9781788016124-00290\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Lithium-ion Batteries","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/9781788016124-00290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Lithium-ion (Li-ion) batteries dominate the global energy storage market. Unfortunately, safety concerns for the utilization and transportation of these advanced energy storage devices exist due to the inherent possibility of thermal runaway. This chapter provides a detailed description of what Li-ion battery thermal runaway is and how it is characterized. Discussion is given on several high visibility field failure incidents. An introduction is provided on the modeling methods and primary testing techniques used to characterize thermal runaway. Last, a brief discussion is given on future trends and expectations associated with Li-ion battery safety.