基于局部线性嵌入的人脸识别研究

Cuihong Zhou, Gelan Yang
{"title":"基于局部线性嵌入的人脸识别研究","authors":"Cuihong Zhou, Gelan Yang","doi":"10.1109/ICCEE.2009.130","DOIUrl":null,"url":null,"abstract":"Image data taken with various capturing devices are usually multidimensional and therefore they are not very suitable for accurate classification normally expecting to operate only on a small set of relevant features. Locally Linear Embedding is an effective nonlinear dimensionality reduction method for exploring the intrinsic characteristics of high dimensional data. In this paper, novel Local linear embedding for face classification is proposed. We modify the LLE algorithm by preserving more geometrical knowledge of the high-dimensional data, then combining with simple classifiers such as the nearest mean classifier. Experimental simulations are shown to yield remarkably good classification results in high dimension face image sequence.","PeriodicalId":343870,"journal":{"name":"2009 Second International Conference on Computer and Electrical Engineering","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research of Face Recognition Based on Locally Linear Embedding\",\"authors\":\"Cuihong Zhou, Gelan Yang\",\"doi\":\"10.1109/ICCEE.2009.130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image data taken with various capturing devices are usually multidimensional and therefore they are not very suitable for accurate classification normally expecting to operate only on a small set of relevant features. Locally Linear Embedding is an effective nonlinear dimensionality reduction method for exploring the intrinsic characteristics of high dimensional data. In this paper, novel Local linear embedding for face classification is proposed. We modify the LLE algorithm by preserving more geometrical knowledge of the high-dimensional data, then combining with simple classifiers such as the nearest mean classifier. Experimental simulations are shown to yield remarkably good classification results in high dimension face image sequence.\",\"PeriodicalId\":343870,\"journal\":{\"name\":\"2009 Second International Conference on Computer and Electrical Engineering\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Second International Conference on Computer and Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCEE.2009.130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Second International Conference on Computer and Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCEE.2009.130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

使用各种捕获设备拍摄的图像数据通常是多维的,因此它们不太适合用于准确分类,通常期望仅对一小部分相关特征进行操作。局部线性嵌入是探索高维数据内在特征的一种有效的非线性降维方法。本文提出了一种新的局部线性嵌入人脸分类方法。我们通过保留更多高维数据的几何知识来改进LLE算法,然后结合最接近均值分类器等简单分类器。实验仿真结果表明,该方法对高维人脸图像序列具有很好的分类效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research of Face Recognition Based on Locally Linear Embedding
Image data taken with various capturing devices are usually multidimensional and therefore they are not very suitable for accurate classification normally expecting to operate only on a small set of relevant features. Locally Linear Embedding is an effective nonlinear dimensionality reduction method for exploring the intrinsic characteristics of high dimensional data. In this paper, novel Local linear embedding for face classification is proposed. We modify the LLE algorithm by preserving more geometrical knowledge of the high-dimensional data, then combining with simple classifiers such as the nearest mean classifier. Experimental simulations are shown to yield remarkably good classification results in high dimension face image sequence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ID Based Signature Schemes for Electronic Voting Service Oriented Approach to Improve the Power of Snorts On-line Colour Image Compression Based on Pipelined Architecture CMMP: Clustering-Based Multi-channel MAC Protocol in VANET Computer Aided Protection (Overcurrent) Coordination Studies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1