使用卷积神经网络方法检测有毒评论

Varun Mishra, Monika Tripathi
{"title":"使用卷积神经网络方法检测有毒评论","authors":"Varun Mishra, Monika Tripathi","doi":"10.1109/CICN56167.2022.10008301","DOIUrl":null,"url":null,"abstract":"In the most significant issue now plaguing social networking platforms and online communities is toxicity identification. Therefore, it is necessary to create an automatic hazardous identification system to block and restrict individual from certain online environments. We introduce multichannel Convolutional Neural Network (CNN) approach in this paper for the detection of toxic comments in a multi-label context. With the help of pre-trained word embeddings, the suggested model produces word vectors. Also, to model input words with long-term dependency, this hybrid model extracts local characteristics using a variety of filters and kernel sizes. Then, to forecast multi-label categories, we integrate numerous channels with three layers as fully linked, normalization, and an output layer. The results of the experiments show that the suggested model performs where we are presenting the fresh modeling CNN approach to detect the toxicity of textual content present on the social media platforms and we categorized the toxicity into positive and negative impact on our society.","PeriodicalId":287589,"journal":{"name":"2022 14th International Conference on Computational Intelligence and Communication Networks (CICN)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detecting Toxic Comments Using Convolutional Neural Network Approach\",\"authors\":\"Varun Mishra, Monika Tripathi\",\"doi\":\"10.1109/CICN56167.2022.10008301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the most significant issue now plaguing social networking platforms and online communities is toxicity identification. Therefore, it is necessary to create an automatic hazardous identification system to block and restrict individual from certain online environments. We introduce multichannel Convolutional Neural Network (CNN) approach in this paper for the detection of toxic comments in a multi-label context. With the help of pre-trained word embeddings, the suggested model produces word vectors. Also, to model input words with long-term dependency, this hybrid model extracts local characteristics using a variety of filters and kernel sizes. Then, to forecast multi-label categories, we integrate numerous channels with three layers as fully linked, normalization, and an output layer. The results of the experiments show that the suggested model performs where we are presenting the fresh modeling CNN approach to detect the toxicity of textual content present on the social media platforms and we categorized the toxicity into positive and negative impact on our society.\",\"PeriodicalId\":287589,\"journal\":{\"name\":\"2022 14th International Conference on Computational Intelligence and Communication Networks (CICN)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 14th International Conference on Computational Intelligence and Communication Networks (CICN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CICN56167.2022.10008301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th International Conference on Computational Intelligence and Communication Networks (CICN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICN56167.2022.10008301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前困扰社交网络平台和在线社区的最重要问题是毒性识别。因此,有必要创建一个自动危险识别系统,以阻止和限制个人从某些网络环境。在本文中,我们引入了多通道卷积神经网络(CNN)方法来检测多标签上下文中的有毒评论。在预训练词嵌入的帮助下,该模型生成词向量。此外,为了对具有长期依赖性的输入词建模,该混合模型使用各种过滤器和核大小提取局部特征。然后,为了预测多标签类别,我们将多个通道集成为三层,分别为完全链接、规范化和输出层。实验结果表明,我们提出了一种新的CNN建模方法来检测社交媒体平台上文本内容的毒性,我们将毒性分为对我们社会的积极和消极影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detecting Toxic Comments Using Convolutional Neural Network Approach
In the most significant issue now plaguing social networking platforms and online communities is toxicity identification. Therefore, it is necessary to create an automatic hazardous identification system to block and restrict individual from certain online environments. We introduce multichannel Convolutional Neural Network (CNN) approach in this paper for the detection of toxic comments in a multi-label context. With the help of pre-trained word embeddings, the suggested model produces word vectors. Also, to model input words with long-term dependency, this hybrid model extracts local characteristics using a variety of filters and kernel sizes. Then, to forecast multi-label categories, we integrate numerous channels with three layers as fully linked, normalization, and an output layer. The results of the experiments show that the suggested model performs where we are presenting the fresh modeling CNN approach to detect the toxicity of textual content present on the social media platforms and we categorized the toxicity into positive and negative impact on our society.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Prediction of Downhole Pressure while Tripping A Parallelized Genetic Algorithms approach to Community Energy Systems Planning Application of Artificial Neural Network to Estimate Students Performance in Scholastic Assessment Test A New Intelligent System for Evaluating and Assisting Students in Laboratory Learning Management System Performance Evaluation of Machine Learning Models on Apache Spark: An Empirical Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1