分布式温度传感在多级压裂诊断中的完井效果

Shohei Sakaida, D. Zhu, A. Hill
{"title":"分布式温度传感在多级压裂诊断中的完井效果","authors":"Shohei Sakaida, D. Zhu, A. Hill","doi":"10.2118/201604-ms","DOIUrl":null,"url":null,"abstract":"\n Distributed temperature sensing (DTS) is a valuable tool to diagnose multistage hydraulic fracture treatments. When a stage interval is shut-in, the clusters which take more fluid during pumping warm up more slowly. Therefore, the fluid volume injected into each cluster can be quantitatively interpreted by numerical inversion of the warm-back temperature behavior. This general concept assumes that the different warm-back behavior is controlled by only the injected fluid volume, however, recent observations of DTS data indicate that completion configurations significantly influence the warm-back behavior.\n This paper investigates the completion effects on the DTS interpretation. In ideal conditions, when a stage is fractured, the upstream stage intervals should show an almost uniform temperature that is close to the injected fluid temperature. This is due to the high fluid velocity of injected fluid in the wellbore, and the upstream intervals have not been perforated (non-communicating intervals). Thus, the only heat transfer is heat conduction between the wellbore fluid and the surrounding reservoir. But the field DTS data show considerably irregular variations in temperature along the upstream stage intervals. These variations are caused by the completion effects. The non-uniform temperature profile is caused by different heat transfer behavior induced by completion hardware along the production casing string such as joints, clamps, and blast protectors, and by the sensing cable location in the cement, as well as the cement quality. Since the heat transfer behavior impacts the warm-back behavior as well as the temperature profile, the completion effects need to be considered in DTS interpretation.\n A method of DTS interpretation considering the completion effects to diagnose multistage fracture treatments was developed. Since the heat transfer between a wellbore and a reservoir depends on the overall heat transfer coefficient describing heat conduction through the completion in a forward model, this parameter needs to be tuned along the entire wellbore. To calibrate the completion effect, the temperature inversion is conducted using the temperature measured at a stage interval that is upstream of a stage interval currently being treated. Since the interpreted stage interval is not perforated at that time, the thermal behavior at the non-communicating interval is governed by only the heat conduction through the completion environment. Once the effective values of the overall heat transfer coefficient are estimated along the interpreted stage interval, they can be assumed to be constant physical parameters. Then, the fluid volume distribution is interpreted by using the effective overall heat transfer coefficient profile along each interval.\n The interpretation method developed in this study was demonstrated using field data, and it was concluded that the new DTS interpretation method provides more accurate diagnosis of fracture treatments.","PeriodicalId":359083,"journal":{"name":"Day 2 Tue, October 27, 2020","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Completion Effects on Diagnosing Multistage Fracture Treatments with Distributed Temperature Sensing\",\"authors\":\"Shohei Sakaida, D. Zhu, A. Hill\",\"doi\":\"10.2118/201604-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Distributed temperature sensing (DTS) is a valuable tool to diagnose multistage hydraulic fracture treatments. When a stage interval is shut-in, the clusters which take more fluid during pumping warm up more slowly. Therefore, the fluid volume injected into each cluster can be quantitatively interpreted by numerical inversion of the warm-back temperature behavior. This general concept assumes that the different warm-back behavior is controlled by only the injected fluid volume, however, recent observations of DTS data indicate that completion configurations significantly influence the warm-back behavior.\\n This paper investigates the completion effects on the DTS interpretation. In ideal conditions, when a stage is fractured, the upstream stage intervals should show an almost uniform temperature that is close to the injected fluid temperature. This is due to the high fluid velocity of injected fluid in the wellbore, and the upstream intervals have not been perforated (non-communicating intervals). Thus, the only heat transfer is heat conduction between the wellbore fluid and the surrounding reservoir. But the field DTS data show considerably irregular variations in temperature along the upstream stage intervals. These variations are caused by the completion effects. The non-uniform temperature profile is caused by different heat transfer behavior induced by completion hardware along the production casing string such as joints, clamps, and blast protectors, and by the sensing cable location in the cement, as well as the cement quality. Since the heat transfer behavior impacts the warm-back behavior as well as the temperature profile, the completion effects need to be considered in DTS interpretation.\\n A method of DTS interpretation considering the completion effects to diagnose multistage fracture treatments was developed. Since the heat transfer between a wellbore and a reservoir depends on the overall heat transfer coefficient describing heat conduction through the completion in a forward model, this parameter needs to be tuned along the entire wellbore. To calibrate the completion effect, the temperature inversion is conducted using the temperature measured at a stage interval that is upstream of a stage interval currently being treated. Since the interpreted stage interval is not perforated at that time, the thermal behavior at the non-communicating interval is governed by only the heat conduction through the completion environment. Once the effective values of the overall heat transfer coefficient are estimated along the interpreted stage interval, they can be assumed to be constant physical parameters. Then, the fluid volume distribution is interpreted by using the effective overall heat transfer coefficient profile along each interval.\\n The interpretation method developed in this study was demonstrated using field data, and it was concluded that the new DTS interpretation method provides more accurate diagnosis of fracture treatments.\",\"PeriodicalId\":359083,\"journal\":{\"name\":\"Day 2 Tue, October 27, 2020\",\"volume\":\"88 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Tue, October 27, 2020\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/201604-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Tue, October 27, 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/201604-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

分布式温度传感(DTS)是一种有价值的多级水力压裂诊断工具。当一段井段关井时,在泵送过程中吸收更多流体的井簇升温更慢。因此,注入每个簇的流体体积可以通过对暖回温度行为的数值反演进行定量解释。这一概念假设不同的暖回行为仅由注入的流体量控制,然而,最近对DTS数据的观察表明,完井配置对暖回行为有显著影响。本文研究了完井对DTS解释的影响。在理想情况下,当一级压裂发生时,上游段段的温度应该接近注入流体的温度,几乎是均匀的。这是由于注入流体在井筒中的流速很高,而上游段没有射孔(非连通段)。因此,唯一的传热是井筒流体与周围储层之间的热传导。但现场DTS数据显示,沿上游段的温度变化非常不规则。这些变化是由完井效应引起的。不均匀的温度分布是由沿生产套管柱的完井硬件(如接头、夹钳和防爆保护器)、传感电缆在水泥中的位置以及水泥质量引起的不同传热行为造成的。由于传热行为会影响热背行为和温度分布,因此在DTS解释中需要考虑完井效应。提出了一种考虑完井效果的DTS解释诊断多级压裂的方法。由于井筒与储层之间的传热取决于在正演模型中描述完井热传导的总体传热系数,因此需要沿整个井筒调整该参数。为了校准完井效果,使用在当前处理的段段上游的段段测量的温度进行温度反演。由于当时解释段段没有射孔,因此非连通段段的热行为仅受完井环境的热传导控制。一旦沿解释级段估计总传热系数的有效值,就可以假定它们是恒定的物理参数。然后,利用有效总传热系数沿各层段的剖面来解释流体体积分布。本研究开发的解释方法使用现场数据进行了验证,结论是新的DTS解释方法提供了更准确的裂缝治疗诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Completion Effects on Diagnosing Multistage Fracture Treatments with Distributed Temperature Sensing
Distributed temperature sensing (DTS) is a valuable tool to diagnose multistage hydraulic fracture treatments. When a stage interval is shut-in, the clusters which take more fluid during pumping warm up more slowly. Therefore, the fluid volume injected into each cluster can be quantitatively interpreted by numerical inversion of the warm-back temperature behavior. This general concept assumes that the different warm-back behavior is controlled by only the injected fluid volume, however, recent observations of DTS data indicate that completion configurations significantly influence the warm-back behavior. This paper investigates the completion effects on the DTS interpretation. In ideal conditions, when a stage is fractured, the upstream stage intervals should show an almost uniform temperature that is close to the injected fluid temperature. This is due to the high fluid velocity of injected fluid in the wellbore, and the upstream intervals have not been perforated (non-communicating intervals). Thus, the only heat transfer is heat conduction between the wellbore fluid and the surrounding reservoir. But the field DTS data show considerably irregular variations in temperature along the upstream stage intervals. These variations are caused by the completion effects. The non-uniform temperature profile is caused by different heat transfer behavior induced by completion hardware along the production casing string such as joints, clamps, and blast protectors, and by the sensing cable location in the cement, as well as the cement quality. Since the heat transfer behavior impacts the warm-back behavior as well as the temperature profile, the completion effects need to be considered in DTS interpretation. A method of DTS interpretation considering the completion effects to diagnose multistage fracture treatments was developed. Since the heat transfer between a wellbore and a reservoir depends on the overall heat transfer coefficient describing heat conduction through the completion in a forward model, this parameter needs to be tuned along the entire wellbore. To calibrate the completion effect, the temperature inversion is conducted using the temperature measured at a stage interval that is upstream of a stage interval currently being treated. Since the interpreted stage interval is not perforated at that time, the thermal behavior at the non-communicating interval is governed by only the heat conduction through the completion environment. Once the effective values of the overall heat transfer coefficient are estimated along the interpreted stage interval, they can be assumed to be constant physical parameters. Then, the fluid volume distribution is interpreted by using the effective overall heat transfer coefficient profile along each interval. The interpretation method developed in this study was demonstrated using field data, and it was concluded that the new DTS interpretation method provides more accurate diagnosis of fracture treatments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of Oscillation Rheology Method to Studying Fracturing Fluids Smart Completion Improvement in Horizontal Wells Based on Through-Barrier Diagnostics Potential and Possible Technological Solutions for Field Development of Unconventional Reservoirs: Bazhenov Formation Acidizing Combined with Heat Generating System in Low-Temperature Dolomitized Wax Damaged Carbonates A Field Pilot Test on CO2 Assisted Steam-Flooding in a Steam-flooded Heavy Oil Reservoir in China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1