基于不同异构杂波子空间估计的低秩杂波数值性能

A. Breloy, G. Ginolhac, F. Pascal, P. Forster
{"title":"基于不同异构杂波子空间估计的低秩杂波数值性能","authors":"A. Breloy, G. Ginolhac, F. Pascal, P. Forster","doi":"10.1109/RADAR.2014.7060426","DOIUrl":null,"url":null,"abstract":"Space time Adaptive Processing (STAP) for airborne RADAR fits the context of a disturbance composed of a Low Rank (LR) clutter, here modeled by a Compound Gaussian (CG) process, plus a white Gaussian noise (WGN). In such context, the corresponding LR adaptive filters used to detect a target require less training vectors than classical methods to reach equivalent performance. Unlike the classical filter which is based on the Covariance Matrix (CM) of the noise, the LR filter is based on the clutter subspace projector, which is usually derived from a Singular Value Decomposition (SVD) of a noise CM estimate. Regarding to the considered model of LR-CG plus WGN, recent results are providing both direct estimators of the clutter subspace [1][2] and an exact MLE of the noise CM [3]. To promote the use of these new estimation methods, this paper proposes to apply them to realistic STAP simulations.","PeriodicalId":317910,"journal":{"name":"2014 International Radar Conference","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Numerical performances of low rank stap based on different heterogeneous clutter subspace estimators\",\"authors\":\"A. Breloy, G. Ginolhac, F. Pascal, P. Forster\",\"doi\":\"10.1109/RADAR.2014.7060426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Space time Adaptive Processing (STAP) for airborne RADAR fits the context of a disturbance composed of a Low Rank (LR) clutter, here modeled by a Compound Gaussian (CG) process, plus a white Gaussian noise (WGN). In such context, the corresponding LR adaptive filters used to detect a target require less training vectors than classical methods to reach equivalent performance. Unlike the classical filter which is based on the Covariance Matrix (CM) of the noise, the LR filter is based on the clutter subspace projector, which is usually derived from a Singular Value Decomposition (SVD) of a noise CM estimate. Regarding to the considered model of LR-CG plus WGN, recent results are providing both direct estimators of the clutter subspace [1][2] and an exact MLE of the noise CM [3]. To promote the use of these new estimation methods, this paper proposes to apply them to realistic STAP simulations.\",\"PeriodicalId\":317910,\"journal\":{\"name\":\"2014 International Radar Conference\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Radar Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RADAR.2014.7060426\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Radar Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR.2014.7060426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

机载雷达的时空自适应处理(STAP)适合由低秩(LR)杂波组成的干扰的背景,这里由复合高斯(CG)过程和高斯白噪声(WGN)建模。在这种情况下,用于检测目标的相应LR自适应滤波器需要比经典方法更少的训练向量才能达到相同的性能。与基于噪声协方差矩阵(CM)的经典滤波器不同,LR滤波器基于杂波子空间投影,而杂波子空间投影通常由噪声协方差矩阵估计的奇异值分解(SVD)得到。对于考虑的LR-CG + WGN模型,最近的结果既提供了杂波子空间的直接估计[1][2],也提供了噪声CM的精确MLE[3]。为了促进这些新的估计方法的应用,本文提出将它们应用于实际的STAP模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical performances of low rank stap based on different heterogeneous clutter subspace estimators
Space time Adaptive Processing (STAP) for airborne RADAR fits the context of a disturbance composed of a Low Rank (LR) clutter, here modeled by a Compound Gaussian (CG) process, plus a white Gaussian noise (WGN). In such context, the corresponding LR adaptive filters used to detect a target require less training vectors than classical methods to reach equivalent performance. Unlike the classical filter which is based on the Covariance Matrix (CM) of the noise, the LR filter is based on the clutter subspace projector, which is usually derived from a Singular Value Decomposition (SVD) of a noise CM estimate. Regarding to the considered model of LR-CG plus WGN, recent results are providing both direct estimators of the clutter subspace [1][2] and an exact MLE of the noise CM [3]. To promote the use of these new estimation methods, this paper proposes to apply them to realistic STAP simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A real-time high resolution passive WiFi Doppler-radar and its applications Multi-sensor full-polarimetric SAR Automatic Target Recognition using pseudo-Zernike moments Evaluation of the attenuation in L-band due to the foliage in function of the elevation angle Cognitive kriging metamodels for forest characterization and target detection Development of a planetary georadar prototype with agile beam (AGILE)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1