使用kNN-MST相似图的谱聚类

Patrick Veenstra, C. Cooper, S. Phelps
{"title":"使用kNN-MST相似图的谱聚类","authors":"Patrick Veenstra, C. Cooper, S. Phelps","doi":"10.1109/CEEC.2016.7835917","DOIUrl":null,"url":null,"abstract":"Spectral clustering is a technique that uses the spectrum of a similarity graph to cluster data. Part of this procedure involves calculating the similarity between data points and creating a similarity graph from the resulting similarity matrix. This is ordinarily achieved by creating a k-nearest neighbour (kNN) graph. In this paper, we show the benefits of using a different similarity graph, namely the union of the kNN graph and the minimum spanning tree of the negated similarity matrix (kNN-MST). We show that this has some distinct advantages on both synthetic and real datasets. Specifically, the clustering accuracy of kNN-MST is less dependent on the choice of k than kNN is.","PeriodicalId":114518,"journal":{"name":"2016 8th Computer Science and Electronic Engineering (CEEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Spectral clustering using the kNN-MST similarity graph\",\"authors\":\"Patrick Veenstra, C. Cooper, S. Phelps\",\"doi\":\"10.1109/CEEC.2016.7835917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spectral clustering is a technique that uses the spectrum of a similarity graph to cluster data. Part of this procedure involves calculating the similarity between data points and creating a similarity graph from the resulting similarity matrix. This is ordinarily achieved by creating a k-nearest neighbour (kNN) graph. In this paper, we show the benefits of using a different similarity graph, namely the union of the kNN graph and the minimum spanning tree of the negated similarity matrix (kNN-MST). We show that this has some distinct advantages on both synthetic and real datasets. Specifically, the clustering accuracy of kNN-MST is less dependent on the choice of k than kNN is.\",\"PeriodicalId\":114518,\"journal\":{\"name\":\"2016 8th Computer Science and Electronic Engineering (CEEC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 8th Computer Science and Electronic Engineering (CEEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEEC.2016.7835917\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 8th Computer Science and Electronic Engineering (CEEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEEC.2016.7835917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

谱聚类是一种利用相似图的谱来聚类数据的技术。这个过程的一部分包括计算数据点之间的相似度,并从得到的相似矩阵创建相似图。这通常是通过创建k近邻(kNN)图来实现的。在本文中,我们展示了使用另一种相似图的好处,即kNN图和负相似矩阵的最小生成树(kNN- mst)的并集。我们表明,这在合成和真实数据集上都有一些明显的优势。具体来说,与kNN相比,kNN- mst的聚类精度对k选择的依赖较小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spectral clustering using the kNN-MST similarity graph
Spectral clustering is a technique that uses the spectrum of a similarity graph to cluster data. Part of this procedure involves calculating the similarity between data points and creating a similarity graph from the resulting similarity matrix. This is ordinarily achieved by creating a k-nearest neighbour (kNN) graph. In this paper, we show the benefits of using a different similarity graph, namely the union of the kNN graph and the minimum spanning tree of the negated similarity matrix (kNN-MST). We show that this has some distinct advantages on both synthetic and real datasets. Specifically, the clustering accuracy of kNN-MST is less dependent on the choice of k than kNN is.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Generation and VR visualization of 3D point clouds for drone target validation assisted by an operator Focus-sensitive dwell time in EyeBCI: Pilot study Quadrotor transporting cable-suspended load using iterative Linear Quadratic regulator (iLQR) optimal control Clonal Selection Algorithm parallelization with MPJExpress Serious games for Fire and Rescue training
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1