加性脉冲噪声信道上的非二进制turbo码

Wael Abd-Alaziz, M. Johnston, S. L. Goff
{"title":"加性脉冲噪声信道上的非二进制turbo码","authors":"Wael Abd-Alaziz, M. Johnston, S. L. Goff","doi":"10.1109/CSNDSP.2016.7574024","DOIUrl":null,"url":null,"abstract":"It is well known that binary error-correcting codes with iterative decoders can achieve near Shannon-limit performance on the additive white Gaussian noise (AWGN) channel, but their performance on more realistic wireless channels can become degraded due to the presence of burst errors or impulsive noise due to interference. A better performing coding scheme is the class of non-binary codes, which are known to be more effective in correcting burst errors, but interestingly there is no research reported in the literature investigating non-binary codes on impulsive noise channels. In this paper, we investigate the performance of non-binary turbo codes defined in a finite field GF(4) on symmetric alpha-stable impulsive noise channels and compare with comparable binary turbo codes. A Cauchy receiver is also employed to mitigate the effects of the channel to assist the turbo decoding. Our simulation results show that although the non-binary turbo code performs similarly to the binary turbo code on the AWGN channel, it achieves a significant coding gain over the binary turbo code as impulsiveness increases.","PeriodicalId":298711,"journal":{"name":"2016 10th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Non-binary turbo codes on additive impulsive noise channels\",\"authors\":\"Wael Abd-Alaziz, M. Johnston, S. L. Goff\",\"doi\":\"10.1109/CSNDSP.2016.7574024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is well known that binary error-correcting codes with iterative decoders can achieve near Shannon-limit performance on the additive white Gaussian noise (AWGN) channel, but their performance on more realistic wireless channels can become degraded due to the presence of burst errors or impulsive noise due to interference. A better performing coding scheme is the class of non-binary codes, which are known to be more effective in correcting burst errors, but interestingly there is no research reported in the literature investigating non-binary codes on impulsive noise channels. In this paper, we investigate the performance of non-binary turbo codes defined in a finite field GF(4) on symmetric alpha-stable impulsive noise channels and compare with comparable binary turbo codes. A Cauchy receiver is also employed to mitigate the effects of the channel to assist the turbo decoding. Our simulation results show that although the non-binary turbo code performs similarly to the binary turbo code on the AWGN channel, it achieves a significant coding gain over the binary turbo code as impulsiveness increases.\",\"PeriodicalId\":298711,\"journal\":{\"name\":\"2016 10th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 10th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSNDSP.2016.7574024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 10th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSNDSP.2016.7574024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

众所周知,具有迭代解码器的二进制纠错码在加性高斯白噪声(AWGN)信道上可以实现接近香农极限的性能,但在更现实的无线信道上,由于干扰导致的突发误差或脉冲噪声的存在,其性能会下降。一种性能更好的编码方案是非二进制码,它可以更有效地纠正突发错误,但有趣的是,没有文献报道研究脉冲噪声信道上的非二进制码。本文研究了有限域GF(4)中定义的非二进制turbo码在对称稳定脉冲噪声信道上的性能,并与可比较的二进制turbo码进行了比较。柯西接收器也被用来减轻信道的影响,以协助turbo解码。仿真结果表明,尽管非二进制turbo码在AWGN信道上的性能与二进制turbo码相似,但随着冲量的增加,它比二进制turbo码获得了显著的编码增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Non-binary turbo codes on additive impulsive noise channels
It is well known that binary error-correcting codes with iterative decoders can achieve near Shannon-limit performance on the additive white Gaussian noise (AWGN) channel, but their performance on more realistic wireless channels can become degraded due to the presence of burst errors or impulsive noise due to interference. A better performing coding scheme is the class of non-binary codes, which are known to be more effective in correcting burst errors, but interestingly there is no research reported in the literature investigating non-binary codes on impulsive noise channels. In this paper, we investigate the performance of non-binary turbo codes defined in a finite field GF(4) on symmetric alpha-stable impulsive noise channels and compare with comparable binary turbo codes. A Cauchy receiver is also employed to mitigate the effects of the channel to assist the turbo decoding. Our simulation results show that although the non-binary turbo code performs similarly to the binary turbo code on the AWGN channel, it achieves a significant coding gain over the binary turbo code as impulsiveness increases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Perfluorinated polymer optical fiber for precision strain sensing based on novel SMS fiber structure Nano-plasmonic thin-film solar cell receiver in visible light communication BER analysis of optical space shift keying in atmospheric turbulence environment Modulation schemes effect on the driver efficiency and the global VLC transmitter energy consumption Performance evaluation of free space optical communication under the weak turbulence regime
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1