生物考古学中基于机器学习的性别鉴定方法

Diana-Lucia Miholca, G. Czibula, Ioan-Gabriel Mircea, I. Czibula
{"title":"生物考古学中基于机器学习的性别鉴定方法","authors":"Diana-Lucia Miholca, G. Czibula, Ioan-Gabriel Mircea, I. Czibula","doi":"10.1109/SYNASC.2016.056","DOIUrl":null,"url":null,"abstract":"In this paper we approach from a machine learningperspective the problem of identifying the sex of archaeologicalremains from anthropometric data, an important problem withinthe field of bioarchaeology. As the conditions for detecting thesex of a skeleton are not entirely known, machine learning baseddata mining models are appropriate to address this problem sincethey are able to capture unobservable patterns in data. Thesepatterns could be relevant for classifying a skeletal remain asmale or female. We propose two machine learning models basedon artificial neural networks for identifying the sex of humanskeletons from bone measurements. The proposed models areexperimentally evaluated on case studies generated from twodata sets publicly available in the archaeological literature. Theobtained results show that the proposed data mining modelsare effective for detecting the sex of archaeological remains, confirming the potential of our proposal.","PeriodicalId":268635,"journal":{"name":"2016 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Machine Learning Based Approaches for Sex Identification in Bioarchaeology\",\"authors\":\"Diana-Lucia Miholca, G. Czibula, Ioan-Gabriel Mircea, I. Czibula\",\"doi\":\"10.1109/SYNASC.2016.056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we approach from a machine learningperspective the problem of identifying the sex of archaeologicalremains from anthropometric data, an important problem withinthe field of bioarchaeology. As the conditions for detecting thesex of a skeleton are not entirely known, machine learning baseddata mining models are appropriate to address this problem sincethey are able to capture unobservable patterns in data. Thesepatterns could be relevant for classifying a skeletal remain asmale or female. We propose two machine learning models basedon artificial neural networks for identifying the sex of humanskeletons from bone measurements. The proposed models areexperimentally evaluated on case studies generated from twodata sets publicly available in the archaeological literature. Theobtained results show that the proposed data mining modelsare effective for detecting the sex of archaeological remains, confirming the potential of our proposal.\",\"PeriodicalId\":268635,\"journal\":{\"name\":\"2016 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC.2016.056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 18th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2016.056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在本文中,我们从机器学习的角度探讨了从人体测量数据中识别考古遗骸性别的问题,这是生物考古学领域的一个重要问题。由于检测骨骼性别的条件尚不完全清楚,基于机器学习的数据挖掘模型适合解决这个问题,因为它们能够捕获数据中不可观察的模式。这些模式可能与将骨骼遗骸分类为男性或女性有关。我们提出了两种基于人工神经网络的机器学习模型,用于从骨骼测量中识别人类骨骼的性别。所提出的模型在考古文献中公开提供的两个数据集生成的案例研究中进行了实验评估。结果表明,所提出的数据挖掘模型对于考古遗骸的性别检测是有效的,证实了我们的建议的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine Learning Based Approaches for Sex Identification in Bioarchaeology
In this paper we approach from a machine learningperspective the problem of identifying the sex of archaeologicalremains from anthropometric data, an important problem withinthe field of bioarchaeology. As the conditions for detecting thesex of a skeleton are not entirely known, machine learning baseddata mining models are appropriate to address this problem sincethey are able to capture unobservable patterns in data. Thesepatterns could be relevant for classifying a skeletal remain asmale or female. We propose two machine learning models basedon artificial neural networks for identifying the sex of humanskeletons from bone measurements. The proposed models areexperimentally evaluated on case studies generated from twodata sets publicly available in the archaeological literature. Theobtained results show that the proposed data mining modelsare effective for detecting the sex of archaeological remains, confirming the potential of our proposal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Hybrid CPU/GPU Approach for the Parallel Algebraic Recursive Multilevel Solver pARMS Continuation Semantics of a Language Inspired by Membrane Computing with Symport/Antiport Interactions Parallel Integer Polynomial Multiplication A Numerical Method for Analyzing the Stability of Bi-Parametric Biological Systems Comparing Different Term Weighting Schemas for Topic Modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1