基于改进U-Net结构的脑肿瘤分割

Der Sheng Tan, Wei Qiang Tam, H. Nisar, K. Yeap
{"title":"基于改进U-Net结构的脑肿瘤分割","authors":"Der Sheng Tan, Wei Qiang Tam, H. Nisar, K. Yeap","doi":"10.1109/IECBES54088.2022.10079331","DOIUrl":null,"url":null,"abstract":"To aid in the clinical diagnosis of brain tumors, magnetic resonance imaging (MRI) is frequently used. The amount of time it takes to manually segment MRI images depends on the radiologist’s level of expertise. In this paper, a novel U-Net architecture for segmenting images of brain tumors is proposed. We have evaluated BraTS 2020 dataset with an improved U-Net structure with a dropout layer inserted between the encoder and decoder to reduce overfitting. By comparing with other U-Net architectures, our method has shown a promising result with dice coefficients 70.40%, 69.08% and 73.03%, for whole tumor (WT), tumor core (TC) and enhanced tumor (ET).","PeriodicalId":146681,"journal":{"name":"2022 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Segmenting Brain Tumor with an Improved U-Net Architecture\",\"authors\":\"Der Sheng Tan, Wei Qiang Tam, H. Nisar, K. Yeap\",\"doi\":\"10.1109/IECBES54088.2022.10079331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To aid in the clinical diagnosis of brain tumors, magnetic resonance imaging (MRI) is frequently used. The amount of time it takes to manually segment MRI images depends on the radiologist’s level of expertise. In this paper, a novel U-Net architecture for segmenting images of brain tumors is proposed. We have evaluated BraTS 2020 dataset with an improved U-Net structure with a dropout layer inserted between the encoder and decoder to reduce overfitting. By comparing with other U-Net architectures, our method has shown a promising result with dice coefficients 70.40%, 69.08% and 73.03%, for whole tumor (WT), tumor core (TC) and enhanced tumor (ET).\",\"PeriodicalId\":146681,\"journal\":{\"name\":\"2022 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IECBES54088.2022.10079331\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECBES54088.2022.10079331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了帮助临床诊断脑肿瘤,磁共振成像(MRI)经常被使用。手动分割MRI图像所需的时间取决于放射科医生的专业水平。本文提出了一种新的用于脑肿瘤图像分割的U-Net结构。我们使用改进的U-Net结构对BraTS 2020数据集进行了评估,该结构在编码器和解码器之间插入了dropout层,以减少过拟合。通过与其他U-Net架构的比较,我们的方法在全肿瘤(WT)、肿瘤核心(TC)和增强肿瘤(ET)上的骰子系数分别为70.40%、69.08%和73.03%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Segmenting Brain Tumor with an Improved U-Net Architecture
To aid in the clinical diagnosis of brain tumors, magnetic resonance imaging (MRI) is frequently used. The amount of time it takes to manually segment MRI images depends on the radiologist’s level of expertise. In this paper, a novel U-Net architecture for segmenting images of brain tumors is proposed. We have evaluated BraTS 2020 dataset with an improved U-Net structure with a dropout layer inserted between the encoder and decoder to reduce overfitting. By comparing with other U-Net architectures, our method has shown a promising result with dice coefficients 70.40%, 69.08% and 73.03%, for whole tumor (WT), tumor core (TC) and enhanced tumor (ET).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Functional Connectivity Based Classification for Autism Spectrum Disorder Using Spearman’s Rank Correlation Vector-Quantized Zero-Delay Deep Autoencoders for the Compression of Electrical Stimulation Patterns of Cochlear Implants using STOI Depression Detection on Malay Dialects Using GPT-3 Mechanical Noise Affects Rambling and Trembling Trajectories During Quiet Standing Effect Of Shoe Cushioning Hardness to Running Biomechanics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1