{"title":"并行图形重写工具","authors":"S. Despréaux, A. Maignan","doi":"10.1109/SYNASC.2018.00021","DOIUrl":null,"url":null,"abstract":"GPaR is a parallel graph rewriting software implemented in C++ with a graphical user interface. Considering an initial graph g and a system of rewriting rules R = {li->ri, i = 1...n}, GPaR rewrites the graph g into a graph g' by using, simultaneously, the rules of R whose left-hand sides, li, match subgraphs of g. GPaR tackles the problem of overlapping matches and thus can be used in a large variety of rewriting problems including fractal systems. Our proposition is illustrated on the examples of adaptive mesh and Pythagorean tree. The performance of GPaR is compared to the performance of other tools on the Sierpinski triangle benchmark.","PeriodicalId":273805,"journal":{"name":"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"26 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"GPaR: A Parallel Graph Rewriting Tool\",\"authors\":\"S. Despréaux, A. Maignan\",\"doi\":\"10.1109/SYNASC.2018.00021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"GPaR is a parallel graph rewriting software implemented in C++ with a graphical user interface. Considering an initial graph g and a system of rewriting rules R = {li->ri, i = 1...n}, GPaR rewrites the graph g into a graph g' by using, simultaneously, the rules of R whose left-hand sides, li, match subgraphs of g. GPaR tackles the problem of overlapping matches and thus can be used in a large variety of rewriting problems including fractal systems. Our proposition is illustrated on the examples of adaptive mesh and Pythagorean tree. The performance of GPaR is compared to the performance of other tools on the Sierpinski triangle benchmark.\",\"PeriodicalId\":273805,\"journal\":{\"name\":\"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"volume\":\"26 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC.2018.00021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2018.00021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

GPaR是一个用c++实现的并行图形重写软件,具有图形用户界面。考虑一个初始图g和一个重写规则系统R = {li->ri, i = 1…n}, GPaR通过同时使用R的规则将图g重写为图g', R的左手边li匹配g的子图。GPaR解决了重叠匹配的问题,因此可以用于包括分形系统在内的各种重写问题。用自适应网格和毕达哥拉斯树的例子说明了我们的命题。将GPaR的性能与Sierpinski三角形基准测试上的其他工具的性能进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GPaR: A Parallel Graph Rewriting Tool
GPaR is a parallel graph rewriting software implemented in C++ with a graphical user interface. Considering an initial graph g and a system of rewriting rules R = {li->ri, i = 1...n}, GPaR rewrites the graph g into a graph g' by using, simultaneously, the rules of R whose left-hand sides, li, match subgraphs of g. GPaR tackles the problem of overlapping matches and thus can be used in a large variety of rewriting problems including fractal systems. Our proposition is illustrated on the examples of adaptive mesh and Pythagorean tree. The performance of GPaR is compared to the performance of other tools on the Sierpinski triangle benchmark.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Inferring, Learning and Modelling Complex Systems with Bayesian Networks. A Tutorial An Improved Approach to Software Defect Prediction using a Hybrid Machine Learning Model Proving Reachability Properties by Coinduction (Extended Abstract) An Image Inpainting Technique Based on Parallel Projection Methods Face Detection and Recognition Methods using Deep Learning in Autonomous Driving
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1