upredictor:基于图转换神经网络的时空数据城市异常预测

Bhumika, D. Das
{"title":"upredictor:基于图转换神经网络的时空数据城市异常预测","authors":"Bhumika, D. Das","doi":"10.1109/IJCNN55064.2022.9892885","DOIUrl":null,"url":null,"abstract":"Urban anomalies are abnormal events such as a blocked driveway, illegal parking, noise, crime, crowd gathering, etc. affect people and policy managers drastically if not handled in time. Prediction of these anomalies in the early stages is critical for public safety and mitigation of economic losses. However, predicting urban anomalies has various challenges like complex spatio-temporal relationships, dynamic nature, and data sparsity. This paper proposes a novel end-to-end deep learning based framework, i.e., UApredictor that utilizes stacked spatial-temporal-interaction block to predict urban anomaly from multivariate time-series data. We model the problem using an attribute graph, where we represent city regions as nodes to capture inter region spatial information using a spatial transformer. Further, to capture temporal correlation, we utilize a temporal transformer, and the interaction module retains complex interaction between spatio-temporal dimensions. Besides, the attention layer is added on the top of the spatial-temporal-interaction block that captures important information for predicting urban anomaly. We use real-world NYC-Urban Anomaly, NYC-Taxi, NYC-POI, NYC-Road Network, NYC-Demographic, and NYC-Weather datasets of New York city to evaluate the urban anomaly prediction framework. The results show that our proposed framework predicts better in terms of F-measure, macro-F1, and micro-F1 than baseline and state-of-the-art models.","PeriodicalId":106974,"journal":{"name":"2022 International Joint Conference on Neural Networks (IJCNN)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"UApredictor: Urban Anomaly Prediction from Spatial-Temporal Data using Graph Transformer Neural Network\",\"authors\":\"Bhumika, D. Das\",\"doi\":\"10.1109/IJCNN55064.2022.9892885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Urban anomalies are abnormal events such as a blocked driveway, illegal parking, noise, crime, crowd gathering, etc. affect people and policy managers drastically if not handled in time. Prediction of these anomalies in the early stages is critical for public safety and mitigation of economic losses. However, predicting urban anomalies has various challenges like complex spatio-temporal relationships, dynamic nature, and data sparsity. This paper proposes a novel end-to-end deep learning based framework, i.e., UApredictor that utilizes stacked spatial-temporal-interaction block to predict urban anomaly from multivariate time-series data. We model the problem using an attribute graph, where we represent city regions as nodes to capture inter region spatial information using a spatial transformer. Further, to capture temporal correlation, we utilize a temporal transformer, and the interaction module retains complex interaction between spatio-temporal dimensions. Besides, the attention layer is added on the top of the spatial-temporal-interaction block that captures important information for predicting urban anomaly. We use real-world NYC-Urban Anomaly, NYC-Taxi, NYC-POI, NYC-Road Network, NYC-Demographic, and NYC-Weather datasets of New York city to evaluate the urban anomaly prediction framework. The results show that our proposed framework predicts better in terms of F-measure, macro-F1, and micro-F1 than baseline and state-of-the-art models.\",\"PeriodicalId\":106974,\"journal\":{\"name\":\"2022 International Joint Conference on Neural Networks (IJCNN)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Joint Conference on Neural Networks (IJCNN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN55064.2022.9892885\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN55064.2022.9892885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

城市异常是指车道堵塞、违章停车、噪音、犯罪、人群聚集等异常事件,如果不及时处理,会对人们和政策管理者造成巨大影响。在早期阶段预测这些异常情况对公共安全和减轻经济损失至关重要。然而,城市异常预测面临着复杂的时空关系、动态性和数据稀疏性等诸多挑战。本文提出了一种基于端到端的深度学习框架upredict,该框架利用堆叠时空交互块从多元时间序列数据中预测城市异常。我们使用属性图对问题进行建模,其中我们将城市区域表示为节点,以使用空间转换器捕获区域间的空间信息。此外,为了捕获时间相关性,我们使用了一个时间转换器,交互模块保留了时空维度之间的复杂交互。此外,在时空交互块的基础上增加了关注层,获取城市异常预测的重要信息。我们使用纽约市真实的NYC-Urban Anomaly、NYC-Taxi、NYC-POI、NYC-Road Network、NYC-Demographic和NYC-Weather数据集来评估城市异常预测框架。结果表明,我们提出的框架在F-measure、宏观f1和微观f1方面的预测优于基线和最先进的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
UApredictor: Urban Anomaly Prediction from Spatial-Temporal Data using Graph Transformer Neural Network
Urban anomalies are abnormal events such as a blocked driveway, illegal parking, noise, crime, crowd gathering, etc. affect people and policy managers drastically if not handled in time. Prediction of these anomalies in the early stages is critical for public safety and mitigation of economic losses. However, predicting urban anomalies has various challenges like complex spatio-temporal relationships, dynamic nature, and data sparsity. This paper proposes a novel end-to-end deep learning based framework, i.e., UApredictor that utilizes stacked spatial-temporal-interaction block to predict urban anomaly from multivariate time-series data. We model the problem using an attribute graph, where we represent city regions as nodes to capture inter region spatial information using a spatial transformer. Further, to capture temporal correlation, we utilize a temporal transformer, and the interaction module retains complex interaction between spatio-temporal dimensions. Besides, the attention layer is added on the top of the spatial-temporal-interaction block that captures important information for predicting urban anomaly. We use real-world NYC-Urban Anomaly, NYC-Taxi, NYC-POI, NYC-Road Network, NYC-Demographic, and NYC-Weather datasets of New York city to evaluate the urban anomaly prediction framework. The results show that our proposed framework predicts better in terms of F-measure, macro-F1, and micro-F1 than baseline and state-of-the-art models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Parameterization of Vector Symbolic Approach for Sequence Encoding Based Visual Place Recognition Nested compression of convolutional neural networks with Tucker-2 decomposition SQL-Rank++: A Novel Listwise Approach for Collaborative Ranking with Implicit Feedback ACTSS: Input Detection Defense against Backdoor Attacks via Activation Subset Scanning ADV-ResNet: Residual Network with Controlled Adversarial Regularization for Effective Classification of Practical Time Series Under Training Data Scarcity Problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1