信用卡客户端违约预测分析

Alžbeta Bačová, F. Babič
{"title":"信用卡客户端违约预测分析","authors":"Alžbeta Bačová, F. Babič","doi":"10.1109/SAMI50585.2021.9378671","DOIUrl":null,"url":null,"abstract":"Predictive analytics has a significant potential to support different decision processes. We aimed to compare various machine learning algorithms for the selected task, which predicts credit card clients' default based on the free available data. We chose Random Forest, AdaBoost, XGBoost, and Gradient Boosting algorithm and applied them to a prepared data sample. We experimentally evaluated the classification models within metrics like accuracy, precision, recall, ROC, and AUC. The results show a very similar performance of the selected algorithms on this dataset. The Gradient boosting (0.7828) achieved the best performance within AUC, but the best precision for target class 1 reached the Bagging algorithm (0.72). The simple data processing brought only minimal improvements in individual metrics. Our results are comparable to the mentioned studies instead of MCC metrics that resulted in better value (0.4111) achieved by the Gradient Boosting model.","PeriodicalId":402414,"journal":{"name":"2021 IEEE 19th World Symposium on Applied Machine Intelligence and Informatics (SAMI)","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Predictive Analytics for Default of Credit Card Clients\",\"authors\":\"Alžbeta Bačová, F. Babič\",\"doi\":\"10.1109/SAMI50585.2021.9378671\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predictive analytics has a significant potential to support different decision processes. We aimed to compare various machine learning algorithms for the selected task, which predicts credit card clients' default based on the free available data. We chose Random Forest, AdaBoost, XGBoost, and Gradient Boosting algorithm and applied them to a prepared data sample. We experimentally evaluated the classification models within metrics like accuracy, precision, recall, ROC, and AUC. The results show a very similar performance of the selected algorithms on this dataset. The Gradient boosting (0.7828) achieved the best performance within AUC, but the best precision for target class 1 reached the Bagging algorithm (0.72). The simple data processing brought only minimal improvements in individual metrics. Our results are comparable to the mentioned studies instead of MCC metrics that resulted in better value (0.4111) achieved by the Gradient Boosting model.\",\"PeriodicalId\":402414,\"journal\":{\"name\":\"2021 IEEE 19th World Symposium on Applied Machine Intelligence and Informatics (SAMI)\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 19th World Symposium on Applied Machine Intelligence and Informatics (SAMI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAMI50585.2021.9378671\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 19th World Symposium on Applied Machine Intelligence and Informatics (SAMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMI50585.2021.9378671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

预测分析具有支持不同决策过程的巨大潜力。我们的目标是比较所选任务的各种机器学习算法,该算法根据免费可用数据预测信用卡客户的违约情况。我们选择了Random Forest, AdaBoost, XGBoost和Gradient Boosting算法,并将它们应用于准备好的数据样本。我们通过实验评估了分类模型的准确性、精密度、召回率、ROC和AUC等指标。结果表明,所选算法在该数据集上的性能非常相似。梯度增强算法(0.7828)在AUC范围内获得了最好的性能,但对于目标类别1的精度达到了Bagging算法(0.72)。简单的数据处理只带来了个别指标的最小改进。我们的结果与上述研究相媲美,而不是通过梯度增强模型获得更好的值(0.4111)的MCC指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predictive Analytics for Default of Credit Card Clients
Predictive analytics has a significant potential to support different decision processes. We aimed to compare various machine learning algorithms for the selected task, which predicts credit card clients' default based on the free available data. We chose Random Forest, AdaBoost, XGBoost, and Gradient Boosting algorithm and applied them to a prepared data sample. We experimentally evaluated the classification models within metrics like accuracy, precision, recall, ROC, and AUC. The results show a very similar performance of the selected algorithms on this dataset. The Gradient boosting (0.7828) achieved the best performance within AUC, but the best precision for target class 1 reached the Bagging algorithm (0.72). The simple data processing brought only minimal improvements in individual metrics. Our results are comparable to the mentioned studies instead of MCC metrics that resulted in better value (0.4111) achieved by the Gradient Boosting model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Usage of RAPTOR for travel time minimizing journey planner Slip Control by Identifying the Magnetic Field of the Elements of an Asynchronous Motor Supervised Operational Change Point Detection using Ensemble Long-Short Term Memory in a Multicomponent Industrial System Improving the activity recognition using GMAF and transfer learning in post-stroke rehabilitation assessment A Baseline Assessment Method of UAV Swarm Resilience Based on Complex Networks*
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1