基于机器学习CNN算法的焊缝缺陷自动检测与表征

R. Krishnan, T. Abhishek, Akhil Vinod, Allen George, C. Harikrishnan
{"title":"基于机器学习CNN算法的焊缝缺陷自动检测与表征","authors":"R. Krishnan, T. Abhishek, Akhil Vinod, Allen George, C. Harikrishnan","doi":"10.51983/arme-2021.10.1.2937","DOIUrl":null,"url":null,"abstract":"Conventional radiographic technique uses visual inspection of scanned output for defect detection. This makes the inline testing of products time consuming and hectic. Convolutional Neural Network (CNN) algorithm in machine learning can be used for the automation of defect detection in radiography thereby reducing human intervention and associated delays. By the use of robotics the welding parameters can be adjusted and the issue of welding defects can be resolved. By combining the two, the defect detection process can be modified into a digital manufacturing process. A dataset created from radiography test data is used for training the algorithm and for writing a program to train this dataset which can be used for defect detection and its  characterization.","PeriodicalId":340179,"journal":{"name":"Asian Review of Mechanical Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic Detection and Characterization of Weld Defects Using CNN Algorithm in Machine Learning\",\"authors\":\"R. Krishnan, T. Abhishek, Akhil Vinod, Allen George, C. Harikrishnan\",\"doi\":\"10.51983/arme-2021.10.1.2937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conventional radiographic technique uses visual inspection of scanned output for defect detection. This makes the inline testing of products time consuming and hectic. Convolutional Neural Network (CNN) algorithm in machine learning can be used for the automation of defect detection in radiography thereby reducing human intervention and associated delays. By the use of robotics the welding parameters can be adjusted and the issue of welding defects can be resolved. By combining the two, the defect detection process can be modified into a digital manufacturing process. A dataset created from radiography test data is used for training the algorithm and for writing a program to train this dataset which can be used for defect detection and its  characterization.\",\"PeriodicalId\":340179,\"journal\":{\"name\":\"Asian Review of Mechanical Engineering\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Review of Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51983/arme-2021.10.1.2937\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Review of Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51983/arme-2021.10.1.2937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

传统的射线照相技术使用视觉检查扫描输出来检测缺陷。这使得产品的内联测试既耗时又忙乱。机器学习中的卷积神经网络(CNN)算法可用于射线照相缺陷检测的自动化,从而减少人为干预和相关延迟。利用机器人技术可以调整焊接参数,解决焊接缺陷问题。通过两者的结合,可以将缺陷检测过程修改为数字化制造过程。从射线照相测试数据创建的数据集用于训练算法和编写程序来训练该数据集,该数据集可用于缺陷检测及其表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic Detection and Characterization of Weld Defects Using CNN Algorithm in Machine Learning
Conventional radiographic technique uses visual inspection of scanned output for defect detection. This makes the inline testing of products time consuming and hectic. Convolutional Neural Network (CNN) algorithm in machine learning can be used for the automation of defect detection in radiography thereby reducing human intervention and associated delays. By the use of robotics the welding parameters can be adjusted and the issue of welding defects can be resolved. By combining the two, the defect detection process can be modified into a digital manufacturing process. A dataset created from radiography test data is used for training the algorithm and for writing a program to train this dataset which can be used for defect detection and its  characterization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fault Tolerance Conceptual Strategy for a Quadcopter Drone with Rotor Failure Rheometric Analysis of Impact of Temperature, Volume Fraction and Mass of Nanoparticle on the Viscosity of Water Based Nanofluids Composite Laminates for Aerospace and Packaging Fields Aerodynamic Simulation and Optimization of Micro Aerial Vehicle Rotor Airfoil at Low Reynolds Number Medical Additive Manufacturing: Challenges and Features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1