基于单目视觉的实时自主导航系统冗余信息丢弃的不确定性准则

A. M. Neto, L. Rittner, D. Zampieri, A. Victorino
{"title":"基于单目视觉的实时自主导航系统冗余信息丢弃的不确定性准则","authors":"A. M. Neto, L. Rittner, D. Zampieri, A. Victorino","doi":"10.1109/ISIC.2008.4635955","DOIUrl":null,"url":null,"abstract":"Navigation of a mobile robot is based on its interaction with the environment through information acquired by sensors. Particularly for mobile robot navigation in unknown environment, the type and number of sensors determines the data volume necessary to process and compose the image from the environment. Nevertheless, the excess of information imposes a great computational cost in data processing. Based on the fact that real-time navigation systems could have their performance compromised by the need of processing all this redundant information, in previous work we presented an automatic image discarding method. Our experiments showed that about 90% of the images can be discarded without loss of information. In this work we developed further this discarding process, proposing a nondeterministic discarding criteria, based on information generated by the TH Finder (threshold and horizon finder) method. The TH Finder is a machine vision segmentation algorithm capable of identifying the navigation area from an image captured by a single camera. Our algorithm is not based on previous knowledge of the environment neither from the image acquisition system and does not depend on information from signs or marks on the road, what makes it robust and well suitable also for nonstructured roads. As a dynamic threshold search method, it is not affected by illumination changes and does not need any contrast adjustments. Experiments showed that the nondeterministic discarding criteria assumed different values according to the amount of obstacles or details in images, thus adjusting the discarding rate of redundant information to each individual situation.","PeriodicalId":342070,"journal":{"name":"2008 IEEE International Symposium on Intelligent Control","volume":"168 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Nondeterministic Criteria to Discard Redundant Information in Real Time Autonomous Navigation Systems based on Monocular Vision\",\"authors\":\"A. M. Neto, L. Rittner, D. Zampieri, A. Victorino\",\"doi\":\"10.1109/ISIC.2008.4635955\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Navigation of a mobile robot is based on its interaction with the environment through information acquired by sensors. Particularly for mobile robot navigation in unknown environment, the type and number of sensors determines the data volume necessary to process and compose the image from the environment. Nevertheless, the excess of information imposes a great computational cost in data processing. Based on the fact that real-time navigation systems could have their performance compromised by the need of processing all this redundant information, in previous work we presented an automatic image discarding method. Our experiments showed that about 90% of the images can be discarded without loss of information. In this work we developed further this discarding process, proposing a nondeterministic discarding criteria, based on information generated by the TH Finder (threshold and horizon finder) method. The TH Finder is a machine vision segmentation algorithm capable of identifying the navigation area from an image captured by a single camera. Our algorithm is not based on previous knowledge of the environment neither from the image acquisition system and does not depend on information from signs or marks on the road, what makes it robust and well suitable also for nonstructured roads. As a dynamic threshold search method, it is not affected by illumination changes and does not need any contrast adjustments. Experiments showed that the nondeterministic discarding criteria assumed different values according to the amount of obstacles or details in images, thus adjusting the discarding rate of redundant information to each individual situation.\",\"PeriodicalId\":342070,\"journal\":{\"name\":\"2008 IEEE International Symposium on Intelligent Control\",\"volume\":\"168 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Symposium on Intelligent Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIC.2008.4635955\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Symposium on Intelligent Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.2008.4635955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

移动机器人的导航是基于传感器获取的信息与环境的相互作用。特别是对于未知环境下的移动机器人导航,传感器的类型和数量决定了处理和合成来自环境的图像所需的数据量。然而,信息的过剩给数据处理带来了巨大的计算成本。基于实时导航系统由于需要处理所有这些冗余信息而影响其性能的事实,我们在之前的工作中提出了一种自动图像丢弃方法。我们的实验表明,大约90%的图像可以被丢弃而不丢失信息。在这项工作中,我们进一步发展了这种丢弃过程,提出了一种基于TH Finder(阈值和地平线Finder)方法生成的信息的不确定性丢弃标准。TH Finder是一种机器视觉分割算法,能够从单个相机捕获的图像中识别导航区域。我们的算法不是基于先前的环境知识,也不是基于图像采集系统,也不依赖于道路上的标志或标记的信息,这使得它具有鲁棒性,也非常适合于非结构化道路。它是一种动态阈值搜索方法,不受光照变化的影响,不需要进行对比度调整。实验表明,不确定性丢弃准则根据图像中障碍物或细节的多少假设不同的值,从而根据不同的情况调整冗余信息的丢弃率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nondeterministic Criteria to Discard Redundant Information in Real Time Autonomous Navigation Systems based on Monocular Vision
Navigation of a mobile robot is based on its interaction with the environment through information acquired by sensors. Particularly for mobile robot navigation in unknown environment, the type and number of sensors determines the data volume necessary to process and compose the image from the environment. Nevertheless, the excess of information imposes a great computational cost in data processing. Based on the fact that real-time navigation systems could have their performance compromised by the need of processing all this redundant information, in previous work we presented an automatic image discarding method. Our experiments showed that about 90% of the images can be discarded without loss of information. In this work we developed further this discarding process, proposing a nondeterministic discarding criteria, based on information generated by the TH Finder (threshold and horizon finder) method. The TH Finder is a machine vision segmentation algorithm capable of identifying the navigation area from an image captured by a single camera. Our algorithm is not based on previous knowledge of the environment neither from the image acquisition system and does not depend on information from signs or marks on the road, what makes it robust and well suitable also for nonstructured roads. As a dynamic threshold search method, it is not affected by illumination changes and does not need any contrast adjustments. Experiments showed that the nondeterministic discarding criteria assumed different values according to the amount of obstacles or details in images, thus adjusting the discarding rate of redundant information to each individual situation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hybrid Intelligent Control Scheme for Activated Sludge Wastewater Treatment Deterministic Learning and Rapid Dynamical Pattern Recognition of Discrete-Time Systems Dynamic Mode, Probe Based High Density Data Storage: A collaborative effort with IBM, Zurich Research Labs A Multi-agent System for Integrated Control and Asset Management of Petroleum Production Facilities - Part 2: Prototype Design Verification Discrete-time Neural Network Control for a Linear Induction Motor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1