基于脑结构磁共振图像对阿尔茨海默病患者进行三向分类的机器学习管道

Sriraam Natarajan, Saket Joshi, B. Saha, A. Edwards, Tushar Khot, Elizabeth Moody, K. Kersting, C. Whitlow, J. Maldjian
{"title":"基于脑结构磁共振图像对阿尔茨海默病患者进行三向分类的机器学习管道","authors":"Sriraam Natarajan, Saket Joshi, B. Saha, A. Edwards, Tushar Khot, Elizabeth Moody, K. Kersting, C. Whitlow, J. Maldjian","doi":"10.1109/ICMLA.2012.42","DOIUrl":null,"url":null,"abstract":"Magnetic resonance imaging (MRI) has emerged as an important tool to identify intermediate biomarkers of Alzheimer's disease (AD) due to its ability to measure regional changes in the brain that are thought to reflect disease severity and progression. In this paper, we set out a novel pipeline that uses volumetric MRI data collected from different subjects as input and classifies them into one of three classes: AD, mild cognitive impairment (MCI) and cognitively normal (CN). Our pipeline consists of three stages - (1) a segmentation layer where brain MRI data is divided into clinically relevant regions, (2) a classification layer that uses relational learning algorithms to make pair wise predictions between the three classes, and (3) a combination layer that combines the results of the different classes to obtain the final classification. One of the key features of our proposed approach is that it allows for domain expert's knowledge to guide the learning in all the layers. We evaluate our pipeline on 397 patients acquired from the Alzheimer's Disease Neuroimaging Initiative and demonstrate that it obtains state-of the-art performance with minimal feature engineering.","PeriodicalId":157399,"journal":{"name":"2012 11th International Conference on Machine Learning and Applications","volume":"225 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Machine Learning Pipeline for Three-Way Classification of Alzheimer Patients from Structural Magnetic Resonance Images of the Brain\",\"authors\":\"Sriraam Natarajan, Saket Joshi, B. Saha, A. Edwards, Tushar Khot, Elizabeth Moody, K. Kersting, C. Whitlow, J. Maldjian\",\"doi\":\"10.1109/ICMLA.2012.42\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnetic resonance imaging (MRI) has emerged as an important tool to identify intermediate biomarkers of Alzheimer's disease (AD) due to its ability to measure regional changes in the brain that are thought to reflect disease severity and progression. In this paper, we set out a novel pipeline that uses volumetric MRI data collected from different subjects as input and classifies them into one of three classes: AD, mild cognitive impairment (MCI) and cognitively normal (CN). Our pipeline consists of three stages - (1) a segmentation layer where brain MRI data is divided into clinically relevant regions, (2) a classification layer that uses relational learning algorithms to make pair wise predictions between the three classes, and (3) a combination layer that combines the results of the different classes to obtain the final classification. One of the key features of our proposed approach is that it allows for domain expert's knowledge to guide the learning in all the layers. We evaluate our pipeline on 397 patients acquired from the Alzheimer's Disease Neuroimaging Initiative and demonstrate that it obtains state-of the-art performance with minimal feature engineering.\",\"PeriodicalId\":157399,\"journal\":{\"name\":\"2012 11th International Conference on Machine Learning and Applications\",\"volume\":\"225 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 11th International Conference on Machine Learning and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2012.42\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 11th International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2012.42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

磁共振成像(MRI)已成为识别阿尔茨海默病(AD)中间生物标志物的重要工具,因为它能够测量被认为反映疾病严重程度和进展的大脑区域变化。在本文中,我们提出了一种新的管道,使用从不同受试者收集的体积MRI数据作为输入,并将其分为三类:AD,轻度认知障碍(MCI)和认知正常(CN)。我们的流水线由三个阶段组成:(1)分割层,其中脑MRI数据被划分为临床相关区域;(2)分类层,使用关系学习算法在三个类别之间进行配对预测;(3)组合层,将不同类别的结果组合在一起以获得最终分类。我们提出的方法的一个关键特征是它允许领域专家的知识来指导所有层的学习。我们对从阿尔茨海默病神经成像计划获得的397名患者进行了评估,并证明它以最小的特征工程获得了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Machine Learning Pipeline for Three-Way Classification of Alzheimer Patients from Structural Magnetic Resonance Images of the Brain
Magnetic resonance imaging (MRI) has emerged as an important tool to identify intermediate biomarkers of Alzheimer's disease (AD) due to its ability to measure regional changes in the brain that are thought to reflect disease severity and progression. In this paper, we set out a novel pipeline that uses volumetric MRI data collected from different subjects as input and classifies them into one of three classes: AD, mild cognitive impairment (MCI) and cognitively normal (CN). Our pipeline consists of three stages - (1) a segmentation layer where brain MRI data is divided into clinically relevant regions, (2) a classification layer that uses relational learning algorithms to make pair wise predictions between the three classes, and (3) a combination layer that combines the results of the different classes to obtain the final classification. One of the key features of our proposed approach is that it allows for domain expert's knowledge to guide the learning in all the layers. We evaluate our pipeline on 397 patients acquired from the Alzheimer's Disease Neuroimaging Initiative and demonstrate that it obtains state-of the-art performance with minimal feature engineering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Excitation Current Forecasting for Reactive Power Compensation in Synchronous Motors: A Data Mining Approach Deep Structure Learning: Beyond Connectionist Approaches Using Twitter Content to Predict Psychopathy A Hybrid Approach to Coping with High Dimensionality and Class Imbalance for Software Defect Prediction O-linked Glycosylation Site Prediction Using Ensemble of Graphical Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1