光定位刺激和同时钙成像探测培养神经网络的时空活动

J. Suzurikawa, M. Nakao, R. Kanzaki, Y. Jimbo, H. Takahashi
{"title":"光定位刺激和同时钙成像探测培养神经网络的时空活动","authors":"J. Suzurikawa, M. Nakao, R. Kanzaki, Y. Jimbo, H. Takahashi","doi":"10.1109/CNE.2007.369611","DOIUrl":null,"url":null,"abstract":"In order to probe the spatio-temporal activity of cultured neural network, microelectrode arrays (MEAs) have been widely used. MEAs, however, have limitations of their electrode numbers and densities, resulting in low spatial resolutions of stimulation and recording. Here, to overcome this problem, we propose and develop an experimental setup for light-addressed stimulation and simultaneous fluorescence calcium imaging, using the previously published light-addressable electrode. The electrode has a translucent thin-film-laminated structure and allows optical access from both sides of the substrate. We, thus, provided the fluorescence excitation light from the topside and an addressing illumination from the bottom. By instantly shutting out the fluorescence excitation light during the stimulus application, we prevented the excitation light from interfering with the addressing illumination. With this experimental setup, we successfully measured spatio-temporal patterns of neuronal activities evoked by light-addressed stimuli. Evoked fluorescence transients with hundred-millisecond latencies suggested the possibility that some neurons were activated by recurrent synaptic inputs, which were possibly overlooked by previous MEA studies.","PeriodicalId":427054,"journal":{"name":"2007 3rd International IEEE/EMBS Conference on Neural Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Light-Addressed Stimulation and Simultaneous Calcium Imaging for Probing Spatio-Temporal Activity of Cultured Neural Network\",\"authors\":\"J. Suzurikawa, M. Nakao, R. Kanzaki, Y. Jimbo, H. Takahashi\",\"doi\":\"10.1109/CNE.2007.369611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to probe the spatio-temporal activity of cultured neural network, microelectrode arrays (MEAs) have been widely used. MEAs, however, have limitations of their electrode numbers and densities, resulting in low spatial resolutions of stimulation and recording. Here, to overcome this problem, we propose and develop an experimental setup for light-addressed stimulation and simultaneous fluorescence calcium imaging, using the previously published light-addressable electrode. The electrode has a translucent thin-film-laminated structure and allows optical access from both sides of the substrate. We, thus, provided the fluorescence excitation light from the topside and an addressing illumination from the bottom. By instantly shutting out the fluorescence excitation light during the stimulus application, we prevented the excitation light from interfering with the addressing illumination. With this experimental setup, we successfully measured spatio-temporal patterns of neuronal activities evoked by light-addressed stimuli. Evoked fluorescence transients with hundred-millisecond latencies suggested the possibility that some neurons were activated by recurrent synaptic inputs, which were possibly overlooked by previous MEA studies.\",\"PeriodicalId\":427054,\"journal\":{\"name\":\"2007 3rd International IEEE/EMBS Conference on Neural Engineering\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 3rd International IEEE/EMBS Conference on Neural Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CNE.2007.369611\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 3rd International IEEE/EMBS Conference on Neural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNE.2007.369611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了探测培养神经网络的时空活动,微电极阵列(MEAs)被广泛应用。然而,mea有其电极数量和密度的限制,导致刺激和记录的空间分辨率低。在这里,为了克服这个问题,我们提出并开发了一个实验装置,用于光寻址刺激和同时荧光钙成像,使用先前发表的光寻址电极。该电极具有半透明的薄膜层压结构,并允许从基板的两侧进行光学访问。因此,我们从顶部提供荧光激发光,并从底部提供寻址照明。通过在刺激应用过程中立即关闭荧光激发光,我们防止了激发光干扰寻址照明。通过这个实验装置,我们成功地测量了光定向刺激引起的神经元活动的时空模式。具有百毫秒潜伏期的诱发荧光瞬态表明,一些神经元可能被反复的突触输入激活,这可能被先前的MEA研究所忽视。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Light-Addressed Stimulation and Simultaneous Calcium Imaging for Probing Spatio-Temporal Activity of Cultured Neural Network
In order to probe the spatio-temporal activity of cultured neural network, microelectrode arrays (MEAs) have been widely used. MEAs, however, have limitations of their electrode numbers and densities, resulting in low spatial resolutions of stimulation and recording. Here, to overcome this problem, we propose and develop an experimental setup for light-addressed stimulation and simultaneous fluorescence calcium imaging, using the previously published light-addressable electrode. The electrode has a translucent thin-film-laminated structure and allows optical access from both sides of the substrate. We, thus, provided the fluorescence excitation light from the topside and an addressing illumination from the bottom. By instantly shutting out the fluorescence excitation light during the stimulus application, we prevented the excitation light from interfering with the addressing illumination. With this experimental setup, we successfully measured spatio-temporal patterns of neuronal activities evoked by light-addressed stimuli. Evoked fluorescence transients with hundred-millisecond latencies suggested the possibility that some neurons were activated by recurrent synaptic inputs, which were possibly overlooked by previous MEA studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Site-selective Electrical Recording from Small Neuronal Circuits using Spray Patterning Method and Mobile Microelectrodes Use of Intracortical Recordings to Control a Hand Neuroprosthesis A System for Single-trial Analysis of Simultaneously Acquired EEG and fMRI Evaluation of approximate stochastic Hodgkin-Huxley models Iterative Full Head Finite Element Model for Deep Brain Stimulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1