基于fisher向量的无约束人脸验证

Jun-Cheng Chen, S. Sankaranarayanan, Vishal M. Patel, R. Chellappa
{"title":"基于fisher向量的无约束人脸验证","authors":"Jun-Cheng Chen, S. Sankaranarayanan, Vishal M. Patel, R. Chellappa","doi":"10.1109/BTAS.2015.7358802","DOIUrl":null,"url":null,"abstract":"We present an algorithm for unconstrained face verification using Fisher vectors computed from frontalized off-frontal gallery and probe faces. In the training phase, we use the Labeled Faces in the Wild (LFW) dataset to learn the Fisher vector encoding and the joint Bayesian metric. Given an image containing the query face, we perform face detection and landmark localization followed by frontalization to normalize the effect of pose. We further extract dense SIFT features which are then encoded using the Fisher vector learnt during the training phase. The similarity scores are then computed using the learnt joint Bayesian metric. CMC curves and FAR/TAR numbers calculated for a subset of the IARPA JANUS challenge dataset are presented.","PeriodicalId":404972,"journal":{"name":"2015 IEEE 7th International Conference on Biometrics Theory, Applications and Systems (BTAS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Unconstrained face verification using fisher vectors computed from frontalized faces\",\"authors\":\"Jun-Cheng Chen, S. Sankaranarayanan, Vishal M. Patel, R. Chellappa\",\"doi\":\"10.1109/BTAS.2015.7358802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an algorithm for unconstrained face verification using Fisher vectors computed from frontalized off-frontal gallery and probe faces. In the training phase, we use the Labeled Faces in the Wild (LFW) dataset to learn the Fisher vector encoding and the joint Bayesian metric. Given an image containing the query face, we perform face detection and landmark localization followed by frontalization to normalize the effect of pose. We further extract dense SIFT features which are then encoded using the Fisher vector learnt during the training phase. The similarity scores are then computed using the learnt joint Bayesian metric. CMC curves and FAR/TAR numbers calculated for a subset of the IARPA JANUS challenge dataset are presented.\",\"PeriodicalId\":404972,\"journal\":{\"name\":\"2015 IEEE 7th International Conference on Biometrics Theory, Applications and Systems (BTAS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 7th International Conference on Biometrics Theory, Applications and Systems (BTAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BTAS.2015.7358802\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 7th International Conference on Biometrics Theory, Applications and Systems (BTAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BTAS.2015.7358802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

我们提出了一种基于Fisher向量的无约束人脸验证算法。在训练阶段,我们使用标记的野外面孔(LFW)数据集学习Fisher向量编码和联合贝叶斯度量。给定包含查询人脸的图像,我们进行人脸检测和地标定位,然后进行正面化以标准化姿态的效果。我们进一步提取密集的SIFT特征,然后使用在训练阶段学习的Fisher向量进行编码。然后使用学习到的联合贝叶斯度量来计算相似性分数。给出了针对IARPA JANUS挑战数据集子集计算的CMC曲线和FAR/TAR数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unconstrained face verification using fisher vectors computed from frontalized faces
We present an algorithm for unconstrained face verification using Fisher vectors computed from frontalized off-frontal gallery and probe faces. In the training phase, we use the Labeled Faces in the Wild (LFW) dataset to learn the Fisher vector encoding and the joint Bayesian metric. Given an image containing the query face, we perform face detection and landmark localization followed by frontalization to normalize the effect of pose. We further extract dense SIFT features which are then encoded using the Fisher vector learnt during the training phase. The similarity scores are then computed using the learnt joint Bayesian metric. CMC curves and FAR/TAR numbers calculated for a subset of the IARPA JANUS challenge dataset are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards fitting a 3D dense facial model to a 2D image: A landmark-free approach Combining 3D and 2D for less constrained periocular recognition Pace independent mobile gait biometrics Iris imaging in visible spectrum using white LED On smartphone camera based fingerphoto authentication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1